An integrated bioinformatics analysis to dissect kinase dependency in triple negative breast cancer

被引:11
|
作者
Ryall, Karen A. [1 ]
Kim, Jihye [1 ]
Klauck, Peter J. [1 ]
Shin, Jimin [1 ]
Yoo, Minjae [1 ]
Ionkina, Anastasia [1 ]
Pitts, Todd M. [1 ]
Tentler, John J. [1 ]
Diamond, Jennifer R. [1 ]
Eckhardt, S. Gail [1 ]
Heasley, Lynn E. [2 ]
Kang, Jaewoo [3 ]
Tan, Aik Choon [1 ,3 ,4 ]
机构
[1] Univ Colorado, Dept Med, Sch Med, Div Med Oncol, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Univ Colorado, Sch Dent Med, Dept Craniofacial Biol, Aurora, CO 80045 USA
[3] Korea Univ, Dept Comp Sci, Seoul, South Korea
[4] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO 80045 USA
来源
BMC GENOMICS | 2015年 / 16卷
基金
美国国家卫生研究院;
关键词
GROWTH-FACTOR RECEPTOR; LUNG-CANCER; SYNTHETIC LETHAL; CELL-LINES; SENSITIVITY; EXPRESSION; INHIBITOR; MUTATIONS; IDENTIFICATION; SIGNATURES;
D O I
10.1186/1471-2164-16-S12-S2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Triple-Negative Breast Cancer (TNBC) is an aggressive disease with a poor prognosis. Clinically, TNBC patients have limited treatment options besides chemotherapy. The goal of this study was to determine the kinase dependency in TNBC cell lines and to predict compounds that could inhibit these kinases using integrative bioinformatics analysis. Results: We integrated publicly available gene expression data, high-throughput pharmacological profiling data, and quantitative in vitro kinase binding data to determine the kinase dependency in 12 TNBC cell lines. We employed Kinase Addiction Ranker (KAR), a novel bioinformatics approach, which integrated these data sources to dissect kinase dependency in TNBC cell lines. We then used the kinase dependency predicted by KAR for each TNBC cell line to query K-Map for compounds targeting these kinases. Wevalidated our predictions using published and new experimental data. Conclusions: In summary, we implemented an integrative bioinformatics analysis that determines kinase dependency in TNBC. Our analysis revealed candidate kinases as potential targets in TNBC for further pharmacological and biological studies.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Triple-negative breast cancer: An institutional analysis
    Gogia, A.
    Raina, V
    Deo, S. V. S.
    Shukla, N. K.
    Mohanti, B. K.
    INDIAN JOURNAL OF CANCER, 2014, 51 (02) : 163 - 166
  • [42] ANALYSIS AND PROGNOSIS OF TRIPLE NEGATIVE "BASALLIKE" BREAST CANCER
    Marinopoulos, S.
    Dimitrakakis, C.
    Sotiropoulou, M.
    Antsaklis, A.
    ANNALS OF ONCOLOGY, 2010, 21 : 32 - 32
  • [43] Triple Negative Breast Cancer
    Aneaus, Sheikh
    Kumar, Amit
    Induja, M. S.
    Tekam, Manish Kumar
    Mullasserri, Sileesh
    CURRENT SCIENCE, 2023, 125 (03): : 236 - 236
  • [44] Triple Negative Breast Cancer
    Cetin, Idil
    Topcul, Mehmet
    ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2014, 15 (06) : 2427 - 2431
  • [45] Triple negative breast cancer
    Collingridge, David
    LANCET ONCOLOGY, 2019, 20 (05): : 618 - 618
  • [46] TRIPLE - NEGATIVE BREAST CANCER
    Di Stefano, A.
    Petrillo, M.
    Di Cerce, R.
    Durante, M.
    Martino, Vercillo, I
    Scambia, G.
    Ferrandina, G.
    ANNALS OF ONCOLOGY, 2009, 20
  • [47] Triple negative breast cancer
    Ressler S.
    Mlineritsch B.
    Greil R.
    memo - Magazine of European Medical Oncology, 2010, 3 (4) : 185 - 189
  • [48] Bioinformatics analysis of human kallikrein 5 (KLK5) expression in metaplastic triple-negative breast cancer
    Song, Yue
    Bai, Guiying
    Li, Xiaoqing
    Zhou, Liyan
    Si, Yiran
    Liu, Xiaohui
    Deng, Yilin
    Shi, Yehui
    CANCER INNOVATION, 2023, 2 (05): : 376 - 390
  • [49] Identification of Key Prognostic Genes of Triple Negative Breast Cancer by LASSO-Based Machine Learning and Bioinformatics Analysis
    Chen, De-Lun
    Cai, Jia-Hua
    Wang, Charles C. N.
    GENES, 2022, 13 (05)
  • [50] Identification by Comprehensive Bioinformatics Analysis of KIF15 as a Candidate Risk Gene for Triple-Negative Breast Cancer
    Sheng, Jiayu
    Li, Chunyang
    Dong, Mengting
    Jiang, Ke
    CANCER MANAGEMENT AND RESEARCH, 2020, 12 : 12337 - 12348