Efficient schemes for the coupled Schrodinger-KdV equations: Decoupled and conserving three invariants

被引:10
|
作者
Cai, Jiaxiang [1 ]
Bai, Chuanzhi [1 ]
Zhang, Haihui [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China
关键词
Schrodinger-KdV equation; Decoupled scheme; Hamiltonian system; Discrete gradient method; Structure-preserving algorithm;
D O I
10.1016/j.aml.2018.06.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a systematic method for discretizing Hamiltonian partial differential equations. An application of the method to the Hamiltonian form of the coupled Schrodinger-KdV equations yields a temporal first-order conservative scheme. Temporal second- and fourth-order schemes are developed by employing the composition method. All the schemes are decoupled and exactly conserve three invariants simultaneously. Numerical results show good performance of the schemes and verify the theoretical results. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:200 / 207
页数:8
相关论文
共 50 条
  • [1] FULLY DECOUPLED SCHEMES FOR THE COUPLED SCHRODINGER-KDV SYSTEM
    Cai, Jiaxiang
    Chen, Juan
    Yang, Bin
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (10): : 5523 - 5538
  • [2] High-order compact finite difference scheme with two conserving invariants for the coupled nonlinear Schrodinger-KdV equations
    He, Yuyu
    Wang, Xiaofeng
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2022, 28 (07) : 900 - 923
  • [3] A conservative spectral method for the coupled Schrodinger-KdV equations
    Zhou, Hao
    Han, Danfu
    Du, Miaoyong
    Shi, Yao
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (05):
  • [4] The finite element method for the coupled Schrodinger-KdV equations
    Bai, Dongmei
    Zhang, Luming
    [J]. PHYSICS LETTERS A, 2009, 373 (26) : 2237 - 2244
  • [5] Average vector field methods for the coupled Schrodinger-KdV equations
    Zhang Hong
    Song Song-He
    Chen Xu-Dong
    Zhou Wei-En
    [J]. CHINESE PHYSICS B, 2014, 23 (07)
  • [6] Multi-symplectic method for the coupled Schrodinger-KdV equations
    Zhang Hong
    Song Song-He
    Zhou Wei-En
    Chen Xu-Dong
    [J]. CHINESE PHYSICS B, 2014, 23 (08)
  • [7] A meshless method for numerical solution of the coupled Schrodinger-KdV equations
    Golbabai, A.
    Safdari-Vaighani, A.
    [J]. COMPUTING, 2011, 92 (03) : 225 - 242
  • [8] New explicit exact solutions to nonlinearly coupled Schrodinger-KdV equations
    Zhang, SQ
    Li, ZB
    [J]. ACTA PHYSICA SINICA, 2002, 51 (10) : 2197 - 2201
  • [9] A Haar wavelet collocation method for coupled nonlinear Schrodinger-KdV equations
    Oruc, Omer
    Esen, Alaattin
    Bulut, Fatih
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (09):
  • [10] A conservative compact finite difference scheme for the coupled Schrodinger-KdV equations
    Xie, Shusen
    Yi, Su-Cheol
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (01)