Multi-symplectic method for the coupled Schrodinger-KdV equations

被引:8
|
作者
Zhang Hong [1 ]
Song Song-He [1 ,2 ]
Zhou Wei-En [1 ]
Chen Xu-Dong [1 ]
机构
[1] Natl Univ Def Technol, Dept Math & Syst Sci, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
coupled Schrodinger-KdV equations; multi-symplectic; Fourier pseudospectral method; WAVE SOLUTIONS; SCHEMES;
D O I
10.1088/1674-1056/23/8/080204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present a multi-symplectic Hamiltonian formulation of the coupled Schrodinger-KdV equations (CSKE) with periodic boundary conditions. Then we develop a novel multi-symplectic Fourier pseudospectral (MSFP) scheme for the CSKE. In numerical experiments, we compare the MSFP method with the Crank-Nicholson (CN) method. Our results show high accuracy, effectiveness, and good ability of conserving the invariants of the MSFP method.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Multi-symplectic method for the coupled Schrdinger–KdV equations
    张弘
    宋松和
    周炜恩
    陈绪栋
    [J]. Chinese Physics B, 2014, (08) : 230 - 236
  • [2] A conservative spectral method for the coupled Schrodinger-KdV equations
    Zhou, Hao
    Han, Danfu
    Du, Miaoyong
    Shi, Yao
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (05):
  • [3] The finite element method for the coupled Schrodinger-KdV equations
    Bai, Dongmei
    Zhang, Luming
    [J]. PHYSICS LETTERS A, 2009, 373 (26) : 2237 - 2244
  • [4] A meshless method for numerical solution of the coupled Schrodinger-KdV equations
    Golbabai, A.
    Safdari-Vaighani, A.
    [J]. COMPUTING, 2011, 92 (03) : 225 - 242
  • [5] Multi-symplectic scheme for the coupled Schrodinger-Boussinesq equations
    Huang Lang-Yang
    Jiao Yan-Dong
    Liang De-Min
    [J]. CHINESE PHYSICS B, 2013, 22 (07)
  • [6] Symplectic and multi-symplectic methods for coupled nonlinear Schrodinger equations with periodic solutions
    Aydin, A.
    Karasoezen, B.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (07) : 566 - 583
  • [7] A Haar wavelet collocation method for coupled nonlinear Schrodinger-KdV equations
    Oruc, Omer
    Esen, Alaattin
    Bulut, Fatih
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (09):
  • [8] Multi-symplectic splitting method for the coupled nonlinear Schrodinger equation
    Chen, Yaming
    Zhu, Huajun
    Song, Songhe
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (07) : 1231 - 1241
  • [9] Multi-symplectic methods for generalized Schrodinger equations
    Islas, AL
    Schober, CM
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2003, 19 (03): : 403 - 413
  • [10] Multi-symplectic wavelet splitting method for the strongly coupled Schrodinger system
    钱旭
    陈亚铭
    高二
    宋松和
    [J]. Chinese Physics B, 2012, (12) : 16 - 22