A Haar wavelet collocation method for coupled nonlinear Schrodinger-KdV equations

被引:21
|
作者
Oruc, Omer [1 ]
Esen, Alaattin [1 ]
Bulut, Fatih [2 ]
机构
[1] Inonu Univ, Fac Arts & Sci, Dept Math, TR-44280 Malatya, Turkey
[2] Inonu Univ, Fac Arts & Sci, Dept Phys, TR-44280 Malatya, Turkey
来源
关键词
Haar wavelet method; coupled nonlinear Schrodinger-KdV equation; nonlinear phenomena; linearization; numerical solution; NUMERICAL-SOLUTION; BURGERS-EQUATION; SYSTEMS; 2D;
D O I
10.1142/S0129183116501035
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, to obtain accurate numerical solutions of coupled nonlinear Schrodinger-Korteweg-de Vries (KdV) equations a Haar wavelet collocation method is proposed. An explicit time stepping scheme is used for discretization of time derivatives and nonlinear terms that appeared in the equations are linearized by a linearization technique and space derivatives are discretized by Haar wavelets. In order to test the accuracy and reliability of the proposed method L-2, L-infinity error norms and conserved quantities are used. Also obtained results are compared with previous ones obtained by finite element method, Crank-Nicolson method and radial basis function meshless methods. Error analysis of Haar wavelets is also given.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A conservative spectral method for the coupled Schrodinger-KdV equations
    Zhou, Hao
    Han, Danfu
    Du, Miaoyong
    Shi, Yao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (05):
  • [2] The finite element method for the coupled Schrodinger-KdV equations
    Bai, Dongmei
    Zhang, Luming
    PHYSICS LETTERS A, 2009, 373 (26) : 2237 - 2244
  • [3] A meshless method for numerical solution of the coupled Schrodinger-KdV equations
    Golbabai, A.
    Safdari-Vaighani, A.
    COMPUTING, 2011, 92 (03) : 225 - 242
  • [4] Multi-symplectic method for the coupled Schrodinger-KdV equations
    Zhang Hong
    Song Song-He
    Zhou Wei-En
    Chen Xu-Dong
    CHINESE PHYSICS B, 2014, 23 (08)
  • [5] HIGH ORDER COMPACT MULTISYMPLECTIC SCHEME FOR COUPLED NONLINEAR SCHRODINGER-KDV EQUATIONS
    Wang, Lan
    Wang, Yushun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (04) : 591 - 604
  • [6] Existence of bound and ground states for a system of coupled nonlinear Schrodinger-KdV equations
    Colorado, Eduardo
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (06) : 511 - 516
  • [7] On the solution of the coupled Schrodinger-KdV equation by the decomposition method
    Kaya, D
    El-Sayed, SM
    PHYSICS LETTERS A, 2003, 313 (1-2) : 82 - 88
  • [8] Abundant explicit solutions for the M-fractional coupled nonlinear Schrodinger-KdV equations
    Hong, Baojian
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2023, 42 (03) : 1222 - 1241
  • [9] Homotopy perturbation method for coupled Schrodinger-KdV equation
    Kucukarslan, Semih
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2264 - 2271
  • [10] Average vector field methods for the coupled Schrodinger-KdV equations
    Zhang Hong
    Song Song-He
    Chen Xu-Dong
    Zhou Wei-En
    CHINESE PHYSICS B, 2014, 23 (07)