ALGORITHMS FOR THE MINIMUM WEIGHT OF LINEAR CODES

被引:6
|
作者
Lisonek, Petr [1 ]
Trummer, Layla [1 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Linear code; minimum weight algorithm; Brouwer-Zimmermann algorithm; information set; matroid partition; DISTANCE;
D O I
10.3934/amc.2016.10.195
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We outline the algorithm for computing the minimum weight of a linear code over a finite field that was invented by A. Brouwer and later extended by K.-H. Zimmermann. We show that matroid partitioning algorithms can be used to efficiently find a favourable (and sometimes best possible) sequence of information sets on which the Brouwer-Zimmermann algorithm operates. We present a new algorithm for computing the minimum weight of a linear code. We use a large set of codes to compare our new algorithm with the Brouwer-Zimmermann algorithm. We find that for about one third of codes in this sample set, our algorithm requires to generate fewer codewords than the Brouwer-Zimmermann algorithm.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 50 条