ALGORITHMS FOR THE MINIMUM WEIGHT OF LINEAR CODES

被引:6
|
作者
Lisonek, Petr [1 ]
Trummer, Layla [1 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Linear code; minimum weight algorithm; Brouwer-Zimmermann algorithm; information set; matroid partition; DISTANCE;
D O I
10.3934/amc.2016.10.195
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We outline the algorithm for computing the minimum weight of a linear code over a finite field that was invented by A. Brouwer and later extended by K.-H. Zimmermann. We show that matroid partitioning algorithms can be used to efficiently find a favourable (and sometimes best possible) sequence of information sets on which the Brouwer-Zimmermann algorithm operates. We present a new algorithm for computing the minimum weight of a linear code. We use a large set of codes to compare our new algorithm with the Brouwer-Zimmermann algorithm. We find that for about one third of codes in this sample set, our algorithm requires to generate fewer codewords than the Brouwer-Zimmermann algorithm.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 50 条
  • [21] On the minimum length of ternary linear codes
    Tatsuya Maruta
    Yusuke Oya
    Designs, Codes and Cryptography, 2013, 68 : 407 - 425
  • [22] LINEAR CODES OF CONSTANT WEIGHT
    WEISS, E
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (01) : 106 - &
  • [23] WEIGHT AND EQUIVALENCE OF LINEAR CODES
    BONNEAU, PG
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1987, 21 (03): : 331 - 339
  • [24] A new minimum weight algorithm for additive codes
    White, Greg
    Grassl, Markus
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 1119 - +
  • [25] Linear quantum codes of minimum distance three
    Ruihu Li
    Xueliang Li
    Zongben Xu
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (06) : 917 - 923
  • [26] Construction of linear codes with large minimum distance
    Braun, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1687 - 1691
  • [27] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna, V
    Tikhomirov, Konstantin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (10) : 6388 - 6401
  • [28] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna
    Tikhomirov, Konstantin
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 114 - 119
  • [29] On the minimum length of linear codes of dimension 5
    Cheon, E. J.
    Kim, S. J.
    Kuranaka, W.
    Maruta, T.
    DISCRETE MATHEMATICS, 2025, 348 (03)
  • [30] A WEIGHT DISTRIBUTION BOUND FOR LINEAR CODES
    LEVY, JE
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (03) : 487 - +