Fractional-order Fourier analysis for ultrashort pulse characterization

被引:8
|
作者
Brunel, Marc
Coetmellec, Sebastien
Lelek, Mickael
Louradour, Frederic
机构
[1] Univ Rouen, CORIA, UMR 6614, F-76801 St Etienne, France
[2] Univ Limoges, XLIM, UMR 6172, F-87065 Limoges, France
关键词
D O I
10.1364/JOSAA.24.001641
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report what we believe to be the first experimental demonstration of ultrashort pulse characterization using fractional-order Fourier analysis. The analysis is applied to the interpretation of spectral interferometry resolved in time (SPIRIT) traces [which are spectral phase interferometry for direct electric field reconstruction (SPIDER)-like interferograms]. First, the fraction al-order Fourier transformation is shown to naturally allow the determination of the cubic spectral phase coefficient of pulses to be analyzed. A simultaneous determination of both cubic and quadratic spectral phase coefficients of the pulses using the fractional-order Fourier series expansion is further demonstrated. This latter technique consists of localizing relative maxima in a 2D cartography representing decomposition coefficients. It is further used to reconstruct or filter SPIRIT traces. (C) 2007 Optical Society of America
引用
收藏
页码:1641 / 1646
页数:6
相关论文
共 50 条
  • [31] Fractional order modelling of fractional-order holds
    J. A. Tenreiro Machado
    Nonlinear Dynamics, 2012, 70 : 789 - 796
  • [32] FRACTIONAL-ORDER ITERATIVE LEARNING CONTROL FOR FRACTIONAL-ORDER LINEAR SYSTEMS
    Li, Yan
    Chen, YangQuan
    Ahn, Hyo-Sung
    ASIAN JOURNAL OF CONTROL, 2011, 13 (01) : 54 - 63
  • [33] Fractional-Order LQR and State Observer for a Fractional-Order Vibratory System
    Takeshita, Akihiro
    Yamashita, Tomohiro
    Kawaguchi, Natsuki
    Kuroda, Masaharu
    APPLIED SCIENCES-BASEL, 2021, 11 (07):
  • [34] Synchronization of Fractional-Order Hyperchaotic Systems via Fractional-Order Controllers
    Li, Tianzeng
    Wang, Yu
    Yang, Yong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [35] DESIGN OF UNKNOWN INPUT FRACTIONAL-ORDER OBSERVERS FOR FRACTIONAL-ORDER SYSTEMS
    N'Doye, Ibrahima
    Darouach, Mohamed
    Voos, Holger
    Zasadzinski, Michel
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (03) : 491 - 500
  • [36] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [37] Fractional-order inverse filters revisited: Equivalence with fractional-order controllers
    Bertsias, Panagiotis
    Psychalinos, Costas
    Minaei, Shahram
    Yesil, Abdullah
    Elwakil, Ahmed S.
    MICROELECTRONICS JOURNAL, 2023, 131
  • [38] Stabilization of fractional-order unstable delay systems by fractional-order controllers
    Kheirizad, Iraj
    Jalali, Ali Akbar
    Khandani, Khosro
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2012, 226 (I9) : 1166 - 1173
  • [39] Fractional-order Legendre functions for solving fractional-order differential equations
    Kazem, S.
    Abbasbandy, S.
    Kumar, Sunil
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (07) : 5498 - 5510
  • [40] Analysis of fractional-order models for hepatitis B
    L. C. Cardoso
    F. L. P. Dos Santos
    R. F. Camargo
    Computational and Applied Mathematics, 2018, 37 : 4570 - 4586