Fractional-order Fourier analysis for ultrashort pulse characterization

被引:8
|
作者
Brunel, Marc
Coetmellec, Sebastien
Lelek, Mickael
Louradour, Frederic
机构
[1] Univ Rouen, CORIA, UMR 6614, F-76801 St Etienne, France
[2] Univ Limoges, XLIM, UMR 6172, F-87065 Limoges, France
关键词
D O I
10.1364/JOSAA.24.001641
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report what we believe to be the first experimental demonstration of ultrashort pulse characterization using fractional-order Fourier analysis. The analysis is applied to the interpretation of spectral interferometry resolved in time (SPIRIT) traces [which are spectral phase interferometry for direct electric field reconstruction (SPIDER)-like interferograms]. First, the fraction al-order Fourier transformation is shown to naturally allow the determination of the cubic spectral phase coefficient of pulses to be analyzed. A simultaneous determination of both cubic and quadratic spectral phase coefficients of the pulses using the fractional-order Fourier series expansion is further demonstrated. This latter technique consists of localizing relative maxima in a 2D cartography representing decomposition coefficients. It is further used to reconstruct or filter SPIRIT traces. (C) 2007 Optical Society of America
引用
收藏
页码:1641 / 1646
页数:6
相关论文
共 50 条
  • [21] Stabilization Criterion of Fractional-Order PDμ Controllers for Interval Fractional-Order Plants with One Fractional-Order Term
    Gao, Zhe
    Cai, Xiaowu
    Zhai, Lirong
    Liu, Ting
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10424 - 10430
  • [22] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
    Yang, Ningning
    Han, Yuchao
    Wu, Chaojun
    Jia, Rong
    Liu, Chongxin
    CHINESE PHYSICS B, 2017, 26 (08)
  • [23] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
    杨宁宁
    韩宇超
    吴朝俊
    贾嵘
    刘崇新
    Chinese Physics B, 2017, (08) : 78 - 90
  • [24] QFPJFMs: Quaternion Fractional-Order Pseudo-Jacobi-Fourier Moments
    Wang, Xiangyang
    Deng, Maoying
    Niu, Panpan
    Yang, Hongying
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2024, 66 (02) : 93 - 114
  • [25] Accurate quaternion fractional-order pseudo-Jacobi-Fourier moments
    Wang, Xiangyang
    Zhang, Yuyang
    Tian, Jialin
    Niu, Panpan
    Yang, Hongying
    PATTERN ANALYSIS AND APPLICATIONS, 2022, 25 (04) : 731 - 755
  • [26] Fractional-Order Theory of Thermoelasticicty. I: Generalization of the Fourier Equation
    Alaimo, G.
    Piccolo, V.
    Chiappini, A.
    Ferrari, M.
    Zonta, D.
    Deseri, L.
    Zingales, M.
    JOURNAL OF ENGINEERING MECHANICS, 2018, 144 (02)
  • [27] Fractional-order Fourier formulation of the propagation of partially coherent light pulses
    Brunel, M
    Coëtmellec, S
    OPTICS COMMUNICATIONS, 2004, 230 (1-3) : 1 - 5
  • [28] QFPJFMs: Quaternion Fractional-Order Pseudo-Jacobi–Fourier Moments
    Xiangyang Wang
    Maoying Deng
    Panpan Niu
    Hongying Yang
    Journal of Mathematical Imaging and Vision, 2024, 66 : 93 - 114
  • [29] Accurate quaternion fractional-order pseudo-Jacobi–Fourier moments
    Xiangyang Wang
    Yuyang Zhang
    Jialin Tian
    Panpan Niu
    Hongying Yang
    Pattern Analysis and Applications, 2022, 25 : 731 - 755
  • [30] Fractional order modelling of fractional-order holds
    Tenreiro Machado, J. A.
    NONLINEAR DYNAMICS, 2012, 70 (01) : 789 - 796