Generalized Killing tensors

被引:12
|
作者
Collinson, CD [1 ]
Howarth, L [1 ]
机构
[1] Univ Hull, Dept Math, Hull HU6 7RX, N Humberside, England
关键词
Killing tensor; geodesic; first integrals;
D O I
10.1023/A:1001928513274
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Generalized Killing tensors are defined and the integrability conditions discussed to show that the familiar result that a space of constant curvature admits the maximum number of Killing vectors and second order Killing tensors does not necessarily generalize. The existence of second order Generalized Killing Yano tensors in spherically symmetric static space-times is investigated and a non-redundant example is given. Ir is proved that the natural vector analogue of the Lenz-Runge vector does not exist.
引用
收藏
页码:1767 / 1776
页数:10
相关论文
共 50 条
  • [31] On the geometry of Killing and conformal tensors
    Coll, B
    Ferrando, JJ
    Sáez, JA
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (06)
  • [32] On Symmetric Killing Tensors and Codazzi Tensors of Ranks p ≥ 2
    Stepanov S.E.
    Aleksandrova I.A.
    Tsyganok I.I.
    Journal of Mathematical Sciences, 2023, 276 (3) : 443 - 469
  • [33] Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions
    Krtous, Pavel
    Kubiznak, David
    Page, Don N.
    Frolov, Valeri P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):
  • [34] Killing spinor spacetimes and constant-eigenvalue Killing tensors
    Beke, D.
    Van den Bergh, N.
    Wylleman, L.
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (10)
  • [35] Killing-Yano forms and Killing tensors on a warped space
    Krtous, Pavel
    Kubiznak, David
    Kolar, Ivan
    PHYSICAL REVIEW D, 2016, 93 (02)
  • [36] Quantum integrability of quadratic Killing tensors
    Duval, C
    Valent, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
  • [37] KILLING TENSORS AND THE GEODESIC DEVIATION EQUATION
    DOLAN, P
    SAFKO, JL
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1984, 422 (MAR) : 340 - 340
  • [38] EQUATION OF GEODESIC DEVIATION AND KILLING TENSORS
    CAVIGLIA, G
    ZORDAN, C
    SALMISTRARO, F
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (05) : 391 - 396
  • [39] Killing(-Yano) tensors in string theory
    Yuri Chervonyi
    Oleg Lunin
    Journal of High Energy Physics, 2015
  • [40] KAHLER MANIFOLDS WITH SOME KILLING TENSORS
    Jelonek, Wlodzimierz
    COLLOQUIUM MATHEMATICUM, 2023, 173 (01) : 15 - 24