Generalized Killing tensors

被引:12
|
作者
Collinson, CD [1 ]
Howarth, L [1 ]
机构
[1] Univ Hull, Dept Math, Hull HU6 7RX, N Humberside, England
关键词
Killing tensor; geodesic; first integrals;
D O I
10.1023/A:1001928513274
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Generalized Killing tensors are defined and the integrability conditions discussed to show that the familiar result that a space of constant curvature admits the maximum number of Killing vectors and second order Killing tensors does not necessarily generalize. The existence of second order Generalized Killing Yano tensors in spherically symmetric static space-times is investigated and a non-redundant example is given. Ir is proved that the natural vector analogue of the Lenz-Runge vector does not exist.
引用
收藏
页码:1767 / 1776
页数:10
相关论文
共 50 条
  • [21] Integrability conditions for Killing-Yano tensors and conformal Killing-Yano tensors
    Batista, Carlos
    PHYSICAL REVIEW D, 2015, 91 (02):
  • [22] Notes on super Killing tensors
    Howe, P. S.
    Lindstrom, U.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03):
  • [23] Notes on super Killing tensors
    P.S. Howe
    U. Lindström
    Journal of High Energy Physics, 2016
  • [24] Nijenhuis Integrability for Killing Tensors
    Schoebel, Konrad
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [25] KILLING TENSORS AND DYNAMIC SYMMETRIES
    CONSTANTOPOULOS, JP
    HADRONIC JOURNAL, 1986, 9 (01): : 1 - 7
  • [26] SYMMETRIC KILLING TENSORS ON NILMANIFOLDS
    del Barco, Viviana
    Moroianu, Andrei
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2020, 148 (03): : 411 - 438
  • [27] Geodesics and Killing tensors in mechanics
    Benn, IM
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (02)
  • [28] ON A CLASSIFICATION OF CONFORMAL KILLING TENSORS
    CAVIGLIA, G
    ZORDAN, C
    SALMISTRARO, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1983, 75 (02): : 161 - 170
  • [29] Killing tensors and canonical geometry
    Cariglia, M.
    Gibbons, G. W.
    van Holten, J-W
    Horvathy, P. A.
    Kosinski, P.
    Zhang, P-M
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (12)
  • [30] KILLING TENSORS AND CONSTANTS OF MOTION
    SOMMERS, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (06) : 787 - 790