Rapid Auto IMRT Planning Using Cascade Dense Convolutional Neural Network (CDCNN): A Feasibility Study for Fluence Map Prediction Using Deep Learning on Prostate IMRT Patients

被引:1
|
作者
Wang, C. [1 ]
Li, X. [1 ]
Chang, Y. [1 ]
Sheng, Y. [1 ]
Zhang, J. [1 ]
Yin, F. F. [1 ]
Wu, Q. J. J. [1 ]
机构
[1] Duke Univ, Med Ctr, Durham, NC USA
关键词
D O I
10.1016/j.ijrobp.2019.06.760
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
3842
引用
收藏
页码:E789 / E790
页数:2
相关论文
共 50 条
  • [41] Phenotype Prediction and Genome-Wide Association Study Using Deep Convolutional Neural Network of Soybean
    Liu, Yang
    Wang, Duolin
    He, Fei
    Wang, Juexin
    Joshi, Trupti
    Xu, Dong
    FRONTIERS IN GENETICS, 2019, 10
  • [42] Deep learning-based ash content prediction of coal flotation concentrate using convolutional neural network
    Wen, Zhiping
    Zhou, Changkui
    Pan, Jinhe
    Nie, Tiancheng
    Zhou, Changchun
    Lu, Zhaolin
    Minerals Engineering, 2021, 174
  • [43] Deep Learning for Price Movement Prediction Using Convolutional Neural Network and Long Short-Term Memory
    Yang, Can
    Zhai, Junjie
    Tao, Guihua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [44] Feasibility Study of Fish Disease Detection using Computer Vision and Deep Convolutional Neural Network (DCNN) Algorithm
    Yasruddin, Muhammad Luqman
    Ismail, Muhammad Amir Hakim
    Husin, Zulkifli
    Tan, Wei Keong
    2022 IEEE 18TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & APPLICATIONS (CSPA 2022), 2022, : 272 - 276
  • [45] Temporally Consistent Depth Map Prediction Using Deep Convolutional Neural Network and Spatial-Temporal Conditional Random Field
    Xu-Ran Zhao
    Xun Wang
    Qi-Chao Chen
    Journal of Computer Science and Technology, 2017, 32 : 443 - 456
  • [46] Temporally Consistent Depth Map Prediction Using Deep Convolutional Neural Network and Spatial-Temporal Conditional Random Field
    Zhao, Xu-Ran
    Wang, Xun
    Chen, Qi-Chao
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2017, 32 (03) : 443 - 456
  • [47] Accelerating Prostate Diffusion-weighted MRI Using a Guided Denoising Convolutional Neural Network: Retrospective Feasibility Study
    Kaye, Elena A.
    Aherne, Emily A.
    Duzgol, Cihan
    Haggstrom, Ida
    Kobler, Erich
    Mazaheri, Yousef
    Fung, Maggie M.
    Zhang, Zhigang
    Otazo, Ricardo
    Vargas, Hebert A.
    Akin, Oguz
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (05) : 1 - 9
  • [48] Automated irreversible electroporated region prediction using deep neural network, a preliminary study for treatment planning
    Khorasani, Amir
    ELECTROMAGNETIC BIOLOGY AND MEDICINE, 2022, 41 (04) : 379 - 388
  • [49] TIG weld defect prediction from weld pool images using deep convolutional neural network and transfer learning
    Verma, Rachna
    Verma, Arvind Kumar
    INTERNATIONAL JOURNAL OF MANUFACTURING RESEARCH, 2024, 19 (02) : 181 - 210
  • [50] Rupture risk prediction of cerebral aneurysms using a novel convolutional neural network-based deep learning model
    Yang, Hyeondong
    Cho, Kwang-Chun
    Kim, Jung-Jae
    Kim, Jae Ho
    Kim, Yong Bae
    Oh, Je Hoon
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2023, 15 (02) : 200 - +