Rapid Auto IMRT Planning Using Cascade Dense Convolutional Neural Network (CDCNN): A Feasibility Study for Fluence Map Prediction Using Deep Learning on Prostate IMRT Patients

被引:1
|
作者
Wang, C. [1 ]
Li, X. [1 ]
Chang, Y. [1 ]
Sheng, Y. [1 ]
Zhang, J. [1 ]
Yin, F. F. [1 ]
Wu, Q. J. J. [1 ]
机构
[1] Duke Univ, Med Ctr, Durham, NC USA
关键词
D O I
10.1016/j.ijrobp.2019.06.760
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
3842
引用
收藏
页码:E789 / E790
页数:2
相关论文
共 50 条
  • [31] Deep neural network model for enhancing disease prediction using auto encoder based broad learning
    Byeon, Haewon
    Prashant, G. C.
    Hannan, Shaikh Abdul
    Alghayadh, Faisal Yousef
    Soomar, Arsalan Muhammad
    Soni, Mukesh
    Bhatt, Mohammed Wasim
    SLAS TECHNOLOGY, 2024, 29 (03): : 100145
  • [32] Comment on 'Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study'
    Valdes, Gilmer
    Interian, Yannet
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (06):
  • [33] PET Radiotherapy Response Assessment Using Encoder-Decoder Convolutional Neural Network and Pre-treatment Information: A Feasibility of Oropharynx Cancer IMRT
    Chang, Y.
    Liu, C.
    Lafata, K.
    Wang, C.
    Cui, Y.
    Ren, L.
    Mowery, Y. M.
    Brizel, D. M.
    Yin, F. F.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E413 - E413
  • [34] An Encoder-Decoder Based Convolutional Neural Network (ED-CNN) for PET Image Response Prediction Using Pre-RT Information: A Feasibility of Oropharynx Cancer IMRT
    Chang, Y.
    Lafata, K.
    Liu, C.
    Wang, C.
    Cui, Y.
    Ren, L.
    Li, X.
    Mowery, Y.
    Brizel, D.
    Yin, F.
    MEDICAL PHYSICS, 2019, 46 (06) : E283 - E283
  • [35] Automated feature learning using deep convolutional auto-encoder neural network for clustering electroencephalograms into sleep stages
    Prabhudesai, Kedar S.
    Collins, Leslie M.
    Mainsah, Boyla O.
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 937 - 940
  • [36] Streamflow Prediction Using Deep Learning Neural Network: Case Study of Yangtze River
    Liu, Darong
    Jiang, Wenchao
    Mu, Lin
    Wang, Si
    IEEE ACCESS, 2020, 8 : 90069 - 90086
  • [37] Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm
    Lee, Jae-Hong
    Kim, DO-hyung
    Jeong, Seong-Nyum
    Choi, Seong-Ho
    JOURNAL OF PERIODONTAL AND IMPLANT SCIENCE, 2018, 48 (02): : 114 - 123
  • [38] Deep learning-based ash content prediction of coal flotation concentrate using convolutional neural network
    Wen, Zhiping
    Zhou, Changkui
    Pan, Jinhe
    Nie, Tiancheng
    Zhou, Changchun
    Lu, Zhaolin
    MINERALS ENGINEERING, 2021, 174
  • [39] Retraction Note: Secure prediction and assessment of sports injuries using deep learning based convolutional neural network
    Hesheng Song
    xiu-ying Han
    Carlos Enrique Montenegro-Marin
    Sujatha krishnamoorthy
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (8) : 3273 - 3273
  • [40] A 3D Deep Convolutional Neural Network for Lung Cancer Survival Prediction Using Transfer Learning
    Ibrahim, M.
    Visvikis, D.
    Le Rest, C. Cheze
    Hatt, M.
    MEDICAL PHYSICS, 2018, 45 (06) : E463 - E463