Rapid Auto IMRT Planning Using Cascade Dense Convolutional Neural Network (CDCNN): A Feasibility Study for Fluence Map Prediction Using Deep Learning on Prostate IMRT Patients

被引:1
|
作者
Wang, C. [1 ]
Li, X. [1 ]
Chang, Y. [1 ]
Sheng, Y. [1 ]
Zhang, J. [1 ]
Yin, F. F. [1 ]
Wu, Q. J. J. [1 ]
机构
[1] Duke Univ, Med Ctr, Durham, NC USA
关键词
D O I
10.1016/j.ijrobp.2019.06.760
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
3842
引用
收藏
页码:E789 / E790
页数:2
相关论文
共 50 条
  • [1] Deep convolutional-Neural-Network Enabling a Direct Prediction of Fluence-Map Forprostate IMRT
    Lee, H.
    Kim, H.
    Kwak, J.
    Kim, Y.
    Cho, S.
    Cho, B.
    MEDICAL PHYSICS, 2018, 45 (06) : E356 - E356
  • [2] Region Specific Dose Prediction Using Deep Neural Networks: A Feasibility Study On the Planning Target Volume of Prostate IMRT Patients
    Nguyen, D.
    Jiang, S.
    MEDICAL PHYSICS, 2020, 47 (06) : E656 - E656
  • [3] Treatment plan prediction for lung IMRT using deep learning based fluence map generation
    Vandewinckele, Liesbeth
    Willems, Siri
    Lambrecht, Maarten
    Berkovic, Patrick
    Maes, Frederik
    Crijns, Wouter
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 99 : 44 - 54
  • [4] A Deep Convolutional Neural Network Approach for IMRT Dose Distribution Prediction in Prostate Cancer Patients
    Kajikawa, T.
    Kadoya, N.
    Ito, K.
    Takayama, Y.
    Chiba, T.
    Tomori, S.
    Takeda, K.
    Jingu, K.
    MEDICAL PHYSICS, 2018, 45 (06) : E557 - E557
  • [5] A convolutional neural network approach for IMRT dose distribution prediction in prostate cancer patients
    Kajikawa, Tomohiro
    Kadoya, Noriyuki
    Ito, Kengo
    Takayama, Yoshiki
    Chiba, Takahito
    Tomori, Seiji
    Nemoto, Hikaru
    Dobashi, Suguru
    Takeda, Ken
    Jingu, Keiichi
    JOURNAL OF RADIATION RESEARCH, 2019, 60 (05) : 685 - 693
  • [6] Head-And-Neck IMRT Auto-Planning Through Fluence Map Prediction Using Progressive Growing of Generative Adversarial Networks
    Li, X.
    Wu, Q. J.
    Wu, Q.
    Wang, C.
    Sheng, Y.
    Wang, W.
    Stephens, H.
    Yin, F.
    Ge, Y.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [7] A Lightweight Deep-Learning Model for Automatic IMRT Planning Via Fluence Map Prediction with a 2.5D Implementation: A Study of Head-And-Neck IMRT Application
    Wang, C.
    Li, X.
    Sheng, Y.
    Zhang, J.
    Lafata, K.
    Yin, F.
    Wu, Q.
    Ge, Y.
    Wu, Q.
    MEDICAL PHYSICS, 2020, 47 (06) : E330 - E330
  • [8] Feasibility Study of Cross-Modality IMRT Auto-Planning Guided by a Deep Learning Model
    Szalkowski, G.
    Xu, X.
    Das, S.
    Yap, P.
    Lian, J.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [9] Fluence-map generation for prostate intensity-modulated radiotherapy planning using a deep-neural-network
    Lee, Hoyeon
    Kim, Hojin
    Kwak, Jungwon
    Kim, Young Seok
    Lee, Sang Wook
    Cho, Seungryong
    Cho, Byungchul
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] Fluence-map generation for prostate intensity-modulated radiotherapy planning using a deep-neural-network
    Hoyeon Lee
    Hojin Kim
    Jungwon Kwak
    Young Seok Kim
    Sang Wook Lee
    Seungryong Cho
    Byungchul Cho
    Scientific Reports, 9