Automatic Code Documentation Generation Using GPT-3

被引:29
|
作者
Khan, Junaed Younus [1 ]
Uddin, Gias [1 ]
机构
[1] Univ Calgary, DISA Lab, Calgary, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
code documentation; GPT-3; Machine Learning;
D O I
10.1145/3551349.3559548
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Source code documentation is an important artifact for efficient software development. Code documentation could greatly benefit from automation since manual documentation is often labouring, resource and time-intensive. In this paper, we employed Codex for automatic code documentation creation. Codex is a GPT-3 based model pre-trained on both natural and programming languages. We find that Codex outperforms existing techniques even with basic settings like one-shot learning (i.e., providing only one example for training). Codex achieves an overall BLEU score of 20.6 for six different programming languages (11.2% improvement over earlier state-of-the-art techniques). Thus, Codex shows promise and warrants in-depth future studies for automatic code documentation generation to support diverse development tasks.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] ARTIFICIAL INTELLIGENCE INACADEMIC WRITING: WHAT IS IN STORE WITH THE GPT-3 ALGORITHM?
    Boa Sorte, Paulo
    Farias, Mario Andre de Freitas
    dos Santos, Allessandra Elisabeth
    Santos, Jefferson do Carmo Andrade
    Dias, Jamile Santos dos Santos Rodrigues
    REVISTA ENTRELINGUAS, 2021, 7
  • [42] PROMPTCAP: Prompt-Guided Image Captioning for VQA with GPT-3
    Hu, Yushi
    Hua, Hang
    Yang, Zhengyuan
    Shi, Weijia
    Smith, Noah A.
    Luo, Jiebo
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 2951 - 2963
  • [43] Detection of malicious smart contracts by fine-tuning GPT-3
    Sathvik, M. S. V. P. J.
    Mazumdar, Hirak
    SECURITY AND PRIVACY, 2024, 7 (06):
  • [44] Automatic generation of XForms code using DTD
    Lee, E
    Kim, TH
    Fourth Annual ACIS International Conference on Computer and Information Science, Proceedings, 2005, : 210 - 214
  • [45] Automatic generation of technical documentation
    Andersen, Asbjørn, 1600, Elsevier Ltd (03):
  • [46] Feature-based detection of automated language models: tackling GPT-2, GPT-3 and Grover
    Froehling, Leon
    Zubiaga, Arkaitz
    PEERJ COMPUTER SCIENCE, 2021,
  • [47] AI model GPT-3 (dis)informs us better than humans
    Spitale, Giovanni
    Biller-Andorno, Nikola
    Germani, Federico
    SCIENCE ADVANCES, 2023, 9 (26)
  • [48] Herding AI Cats: Lessons from Designing a Chatbot by Prompting GPT-3
    Zamfrescu-Pereira, J. D.
    Wei, Heather
    Xiao, Amy
    Gu, Kitty
    Jung, Grace
    Lee, Matthew G.
    Hartmann, Bjoern
    Yang, Qian
    DESIGNING INTERACTIVE SYSTEMS CONFERENCE, DIS 2023, 2023, : 2206 - 2220
  • [49] The Personality Dimensions GPT-3 Expresses During Human-Chatbot Interactions
    Kovacevic, Nikola
    Holz, Christian
    Gross, Markus
    Wampfler, Rafael
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2024, 8 (02):
  • [50] Overlap in meaning is a stronger predictor of semantic activation in GPT-3 than in humans
    Jan Digutsch
    Michal Kosinski
    Scientific Reports, 13