Automatic Code Documentation Generation Using GPT-3

被引:29
|
作者
Khan, Junaed Younus [1 ]
Uddin, Gias [1 ]
机构
[1] Univ Calgary, DISA Lab, Calgary, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
code documentation; GPT-3; Machine Learning;
D O I
10.1145/3551349.3559548
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Source code documentation is an important artifact for efficient software development. Code documentation could greatly benefit from automation since manual documentation is often labouring, resource and time-intensive. In this paper, we employed Codex for automatic code documentation creation. Codex is a GPT-3 based model pre-trained on both natural and programming languages. We find that Codex outperforms existing techniques even with basic settings like one-shot learning (i.e., providing only one example for training). Codex achieves an overall BLEU score of 20.6 for six different programming languages (11.2% improvement over earlier state-of-the-art techniques). Thus, Codex shows promise and warrants in-depth future studies for automatic code documentation generation to support diverse development tasks.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] GPT-3: Its Nature, Scope, Limits, and Consequences
    Floridi, Luciano
    Chiriatti, Massimo
    MINDS AND MACHINES, 2020, 30 (04) : 681 - 694
  • [22] PAC-GPT: A Novel Approach to Generating Synthetic Network Traffic With GPT-3
    Kholgh, Danial Khosh
    Kostakos, Panos
    IEEE ACCESS, 2023, 11 : 114936 - 114951
  • [23] Assessing the Quality of Student-Generated Short Answer Questions Using GPT-3
    Moore, Steven
    Nguyen, Huy A.
    Bier, Norman
    Domadia, Tanvi
    Stamper, John
    EDUCATING FOR A NEW FUTURE: MAKING SENSE OF TECHNOLOGY-ENHANCED LEARNING ADOPTION, EC-TEL 2022, 2022, 13450 : 243 - 257
  • [24] What Makes Good In-Context Examples for GPT-3?
    Liu, Jiachang
    Shen, Dinghan
    Zhang, Yizhe
    Dolan, Bill
    Carin, Lawrence
    Chen, Weizhu
    PROCEEDINGS OF DEEP LEARNING INSIDE OUT (DEELIO 2022): THE 3RD WORKSHOP ON KNOWLEDGE EXTRACTION AND INTEGRATION FOR DEEP LEARNING ARCHITECTURES, 2022, : 100 - 114
  • [25] Non-Human Words: On GPT-3 as a Philosophical Laboratory
    Rees, Tobias
    DAEDALUS, 2022, 151 (02) : 168 - 182
  • [26] Multilingual Complementation of Causality Property on Wikidata Based on GPT-3
    Jin, Yuxi
    Shiramatsu, Shun
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL. 3, 2023, 464 : 573 - 580
  • [27] Automating GUI-based Software Testing with GPT-3
    Zimmermann, Daniel
    Koziolek, Anne
    2023 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION WORKSHOPS, ICSTW, 2023, : 62 - 65
  • [28] Want To Reduce Labeling Cost? GPT-3 Can Help
    Wang, Shuohang
    Liu, Yang
    Xu, Yichong
    Zhu, Chenguang
    Zeng, Michael
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 4195 - 4205
  • [29] Automated Detection of Dark Patterns Using In-Context Learning Capabilities of GPT-3
    Sazid, Yasin
    Fuad, Mridha Md. Nafis
    Sakib, Kazi
    PROCEEDINGS OF THE 2023 30TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, APSEC 2023, 2023, : 569 - 573
  • [30] Using GPT-3 to Build a Lexicon of Drugs of Abuse Synonyms for Social Media Pharmacovigilance
    Carpenter, Kristy A.
    Altman, Russ B.
    BIOMOLECULES, 2023, 13 (02)