Minimax estimation in the linear model with a relative squared error

被引:6
|
作者
Wilczynski, M [1 ]
机构
[1] Wroclaw Tech Univ, Inst Math, PL-50370 Wroclaw, Poland
关键词
linear regression; minimax estimator;
D O I
10.1016/j.jspi.2003.08.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Arnold and Stahlecker considered estimation of the regression coefficients in the linear model with a relative squared error and deterministic disturbances. They found an explicit form for a minimax linear affine solution d* of that problem. In the paper we generalize the result of Arnold and Stahlecker proving that the decision rule d* is also minimax when the class D of possible estimators of the regression coefficients is unrestricted. Then we show that d* remains minimax in D when the disturbances are random with the mean vector zero and the identity covariance matrix. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 212
页数:8
相关论文
共 50 条
  • [41] AUGMENTED MINIMAX LINEAR ESTIMATION
    Hirshberg, David A.
    Wager, Stefan
    ANNALS OF STATISTICS, 2021, 49 (06): : 3206 - 3227
  • [42] MINIMAX ESTIMATION FOR LINEAR REGRESSIONS
    RADNER, R
    ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (04): : 1244 - 1250
  • [43] Quasi-minimax estimation in the general linear regression model
    Yang, Hu
    Wang, Litong
    Song, Lijuan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (07) : 2117 - 2125
  • [44] Quasi-Minimax Estimation in the Linear Model with Measurement Errors
    Wang, Litong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (08) : 1563 - 1571
  • [45] Fuzzy prior information and minimax estimation in the linear regression model
    Bernhard F. Arnold
    Peter Stahlecker
    Statistical Papers, 1997, 38 : 377 - 391
  • [46] Minimax estimation in generalized linear uncertain-stochastic model
    Pankov, AR
    Semenikhin, KV
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2902 - 2903
  • [47] Fuzzy prior information and minimax estimation in the linear regression model
    Arnold, BF
    Stahlecker, P
    STATISTICAL PAPERS, 1997, 38 (04) : 377 - 391
  • [48] On the Performance of Joint Linear Minimum Mean Squared Error (LMMSE) Filtering and Parameter Estimation
    Bensaid, Siouar
    Slock, Dirk
    2013 IEEE 14TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2013, : 420 - 424
  • [49] Estimation of design-based mean squared error of a small area mean model-based estimator under a nested error linear regression model
    Stefan, Marius
    Hidiroglou, Michael A.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1338 - 1363
  • [50] Estimation of mean squared prediction error of empirically spatial predictor of small area means under a linear mixed model
    Torabi, Mahmoud
    Jiang, Jiming
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 208 : 82 - 93