Quasi-minimax estimation in the general linear regression model

被引:3
|
作者
Yang, Hu [1 ]
Wang, Litong [1 ]
Song, Lijuan [2 ]
机构
[1] Chongqing Univ, Coll Math & Phys, Chongqing 400030, Peoples R China
[2] Mil Med Univ, Dept Math, Chongqing 400000, Peoples R China
关键词
Ellipsoidal restriction; General linear regression model; Minimax estimation; RESTRICTIONS; CONSTRAINTS;
D O I
10.1016/j.jspi.2008.09.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is mainly concerned with minimax estimation in the general linear regression model y = X beta + epsilon under ellipsoidal restrictions on the parameter space and quadratic loss function. We confine ourselves to estimators that are linear in the response vector y. The minimax estimators of the regression coefficient beta are derived under homogeneous condition and heterogeneous condition, respectively. Furthermore, these obtained estimators are the ridge-type estimators and mean dispersion error (MDE) superior to the best linear unbiased estimator b = (X'W-1X)X-1'W(-1)y under some conditions. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2117 / 2125
页数:9
相关论文
共 50 条