共 50 条
Achieving gas pressure-dependent luminescence from an AIEgen-based metal-organic framework
被引:45
|作者:
Li, Zhijia
[1
,2
]
Jiang, Feilong
[1
]
Yu, Muxin
[1
]
Li, Shengchang
[1
]
Chen, Lian
[1
]
Hong, Maochun
[1
]
机构:
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金:
中国国家自然科学基金;
关键词:
FLUORESCENCE;
FILMS;
MOF;
D O I:
10.1038/s41467-022-29737-z
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Materials exhibiting aggregation-induced emission (AIE) behaviour enable strong emission in solid state and can respond to various external stimuli, which may facilitate the development of materials for optical sensing, bioimaging or optoelectronic devices. Herein, we use an AIE luminogen 2',5'-diphenyl-[1,1':4',1"-terphenyl]-4,4"-dicarboxylic acid as the ligand to prepare an AIEgen-based MOF (metal-organic framework) named FJI-H31. FJI-H31 exhibits bright luminescence under ambient conditions (under air and at room temperature), but almost no emission is observed under vacuum. Our investigation shows that the emission intensity displays a smooth and reversible enhancement with increased gas pressure, which may be attributed to the restriction of intramolecular motion brought by structural deformation under pressure stimulus. Unlike most pressure-responsive MOFs, the luminescence reverts to its original state once gas pressure recovers. By virtue of its unique optical properties, a luminescent MOF with sensing ability of gas-pressure is realized. Compounds displaying aggregation-induced emission behavior may have application in the preparation of smart materials. Here, the authors report a luminogen-containing metal-organic framework for which luminescence intensity changes are observed in response to gas pressure.
引用
下载
收藏
页数:9
相关论文