Ultrastrong and Highly Conductive MXene-Based Films for High-Performance Electromagnetic Interference Shielding

被引:147
|
作者
Liu, Ji [1 ,2 ]
Liu, Zhangshuo [1 ]
Zhang, Hao-Bin [1 ]
Chen, Wei [1 ]
Zhao, Zhenfang [3 ]
Wang, Qi-Wei [3 ]
Yu, Zhong-Zhen [3 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Coll Mat Sci & Engn, Beijing 100029, Peoples R China
[2] Hunan Univ, Coll Mat Sci & Engn, Changsha 410012, Hunan, Peoples R China
[3] Beijing Univ Chem Technol, Beijing Key Lab Adv Funct Polymer Composites, Beijing 100029, Peoples R China
来源
ADVANCED ELECTRONIC MATERIALS | 2020年 / 6卷 / 01期
基金
中国国家自然科学基金;
关键词
electrical conductivity; electromagnetic interference shielding; graphene oxide; mechanical properties; MXene films; ELECTRICAL-CONDUCTIVITY; GRAPHENE; COMPOSITE; NANOCOMPOSITES; REDUCTION;
D O I
10.1002/aelm.201901094
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ultrathin and flexible electromagnetic interference (EMI) shielding materials are urgently required to shield increasingly serious radiation pollution. Newly emerged 2-dimensional transition-metal carbides (MXenes) are promising for efficient EMI shielding due to their superb electrical conductivity, versatile surface chemistry, and layered structure. However, the mechanical performance of MXene films is not satisfactory for engineering applications, and the traditional reinforcement approaches usually cause serious reduction in electrical conductivity of the films. An efficient strategy is demonstrated to reinforce MXene films with graphene oxide, leading to enhanced interfacial interactions and more densely packed layered structures. The modified MXene film exhibits a high tensile strength of 209 MPa while maintaining its high electrical conductivity close to that of pristine MXene film. An outstanding shielding effectiveness of 50.2 dB is achieved at a small film thickness of 7 mu m. Moreover, a facile technique is used to tune the wetting behavior of the modified MXene films. The water contact angle can be readily regulated from 65.7 degrees to 95.7 degrees. This film, with excellent EMI shielding performance and tunable wetting behavior, is highly promising for various applications in aerospace, flexible supercapacitors, and smart electronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding
    Weng, Chuanxin
    Wang, Guorui
    Dai, Zhaohe
    Pei, Yongmao
    Liu, Luqi
    Zhang, Zhong
    NANOSCALE, 2019, 11 (47) : 22804 - 22812
  • [42] Liquid metal assisted fabrication of MXene-based films: Toward superior electromagnetic interference shielding and thermal management
    Ran, Linxin
    Ma, Xinguo
    Qiu, Lijuan
    Sun, Furong
    Zhao, Lijuan
    Yi, Longfei
    Ji, Xiaoying
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 705 - 717
  • [43] Tuning the Self-Assembled Morphology of Ti3C2TX MXene-Based Hybrids for High-Performance Electromagnetic Interference Shielding
    Gholamirad, Farivash
    Ge, Jinqun
    Sadati, Monirosadat
    Wang, Guoan
    Taheri-Qazvini, Nader
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (43) : 49158 - 49170
  • [44] MXene-coated conductive composite film with ultrathin, flexible, self-cleaning for high-performance electromagnetic interference shielding
    Wang, Yanting
    Peng, Hao-Kai
    Li, Ting-Ting
    Shiu, Bing-Chiuan
    Ren, Hai-Tao
    Zhang, Xuefei
    Lou, Ching-Wen
    Lin, Jia-Horng
    CHEMICAL ENGINEERING JOURNAL, 2021, 412
  • [45] High-performance and multifunctional conductive aerogel films for outstanding electromagnetic interference shielding, Joule heating and energy harvesting
    Zheng, Jiajia
    Hang, Tianyi
    Li, Zhihui
    He, Weiwei
    Jiang, Shaohua
    Li, Xiping
    Chen, Yiming
    Wu, Zhiyi
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [46] Electrospun bifunctional MXene-based electronic skins with high performance electromagnetic shielding and pressure sensing
    Yang, Mei
    Yang, Zijie
    Lv, Chao
    Wang, Zhi
    Lu, Zan
    Lu, Geyu
    Jia, Xiaoteng
    Wang, Ce
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 221
  • [47] Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding
    Jiao, Chenyang
    Deng, Zhiming
    Min, Peng
    Lai, Jingjing
    Gou, Qingqiang
    Gao, Rong
    Yu, Zhong-Zhen
    Zhang, Hao-Bin
    CARBON, 2022, 198 : 179 - 187
  • [48] Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance
    Li, Yuehu
    Chen, Yian
    Liu, Yu
    Zhang, Cunzhi
    Qi, Haisong
    CARBOHYDRATE POLYMERS, 2021, 274
  • [49] Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding
    Liu, Kun
    Du, Haishun
    Liu, Wei
    Zhang, Meng
    Wang, Yaxuan
    Liu, Huayu
    Zhang, Xinyu
    Xu, Ting
    Si, Chuanling
    NANOSCALE, 2022, 14 (40) : 14902 - 14912
  • [50] Multidimensional Nanostructural Engineering of MXene-Based Composite Films for High-Performance Supercapacitors
    Li, Yue
    Xu, Lanshu
    Dai, Juan
    Zhu, Hui-Xia
    Wang, Shou-Juan
    ENERGY & FUELS, 2024, 38 (06) : 5493 - 5505