Ultrastrong and Highly Conductive MXene-Based Films for High-Performance Electromagnetic Interference Shielding

被引:147
|
作者
Liu, Ji [1 ,2 ]
Liu, Zhangshuo [1 ]
Zhang, Hao-Bin [1 ]
Chen, Wei [1 ]
Zhao, Zhenfang [3 ]
Wang, Qi-Wei [3 ]
Yu, Zhong-Zhen [3 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Coll Mat Sci & Engn, Beijing 100029, Peoples R China
[2] Hunan Univ, Coll Mat Sci & Engn, Changsha 410012, Hunan, Peoples R China
[3] Beijing Univ Chem Technol, Beijing Key Lab Adv Funct Polymer Composites, Beijing 100029, Peoples R China
来源
ADVANCED ELECTRONIC MATERIALS | 2020年 / 6卷 / 01期
基金
中国国家自然科学基金;
关键词
electrical conductivity; electromagnetic interference shielding; graphene oxide; mechanical properties; MXene films; ELECTRICAL-CONDUCTIVITY; GRAPHENE; COMPOSITE; NANOCOMPOSITES; REDUCTION;
D O I
10.1002/aelm.201901094
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ultrathin and flexible electromagnetic interference (EMI) shielding materials are urgently required to shield increasingly serious radiation pollution. Newly emerged 2-dimensional transition-metal carbides (MXenes) are promising for efficient EMI shielding due to their superb electrical conductivity, versatile surface chemistry, and layered structure. However, the mechanical performance of MXene films is not satisfactory for engineering applications, and the traditional reinforcement approaches usually cause serious reduction in electrical conductivity of the films. An efficient strategy is demonstrated to reinforce MXene films with graphene oxide, leading to enhanced interfacial interactions and more densely packed layered structures. The modified MXene film exhibits a high tensile strength of 209 MPa while maintaining its high electrical conductivity close to that of pristine MXene film. An outstanding shielding effectiveness of 50.2 dB is achieved at a small film thickness of 7 mu m. Moreover, a facile technique is used to tune the wetting behavior of the modified MXene films. The water contact angle can be readily regulated from 65.7 degrees to 95.7 degrees. This film, with excellent EMI shielding performance and tunable wetting behavior, is highly promising for various applications in aerospace, flexible supercapacitors, and smart electronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A fire resistant MXene-based flexible film with excellent Joule heating and electromagnetic interference shielding performance
    Chang, Ran
    Hao, Peng
    Qu, Hongqiang
    Xu, Jianzhong
    Ma, Jing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 654 : 437 - 445
  • [32] Biomimetic Porous MXene Sediment-Based Hydrogel for High-Performance and Multifunctional Electromagnetic Interference Shielding
    Yang, Yunfei
    Wu, Na
    Li, Bin
    Liu, Wei
    Pan, Fei
    Zeng, Zhihui
    Liu, Jiurong
    ACS NANO, 2022, 16 (09) : 15042 - 15052
  • [33] High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices
    Cao, Ge
    Cai, Shaoyong
    Zhang, He
    Tian, Yanqing
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2022, 5 (03) : 1730 - 1742
  • [34] Asymmetric Ni/PVC films for high-performance electromagnetic interference shielding
    Zhang, Yang
    Fang, Xiao-xia
    Wen, Bian-ying
    CHINESE JOURNAL OF POLYMER SCIENCE, 2015, 33 (06) : 899 - 907
  • [35] Asymmetric Ni/PVC Films for High-performance Electromagnetic Interference Shielding
    张扬
    Xiao-xia Fang
    温变英
    Chinese Journal of Polymer Science, 2015, (06) : 899 - 907
  • [36] High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices
    Ge Cao
    Shaoyong Cai
    He Zhang
    Yanqing Tian
    Advanced Composites and Hybrid Materials, 2022, 5 : 1730 - 1742
  • [37] Asymmetric Ni/PVC films for high-performance electromagnetic interference shielding
    Yang Zhang
    Xiao-xia Fang
    Bian-ying Wen
    Chinese Journal of Polymer Science, 2015, 33 : 899 - 907
  • [38] Ultrathin MXene/Calcium Alginate Aerogel Film for High-Performance Electromagnetic Interference Shielding
    Zhou, Zehang
    Liu, Jize
    Zhang, Xinxing
    Tian, Dong
    Zhan, Zeying
    Lu, Canhui
    ADVANCED MATERIALS INTERFACES, 2019, 6 (06):
  • [39] MXene-decorated carbonized jute composite for high-performance electromagnetic interference shielding
    Sun, Yanli
    Li, Bo
    Zheng, Huafu
    Rong, Kai
    Fan, Wei
    Li, Danyang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 22 : 658 - 667
  • [40] Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding
    Liu, Ji
    Zhang, Hao-Bin
    Sun, Renhui
    Liu, Yafeng
    Liu, Zhangshuo
    Zhou, Aiguo
    Yu, Zhong-Zhen
    ADVANCED MATERIALS, 2017, 29 (38)