Stress granules inhibit fatty acid oxidation by modulating mitochondrial permeability

被引:31
|
作者
Amen, Triana [2 ]
Kaganovich, Daniel [1 ,2 ]
机构
[1] 1Base Pharmaceut, Boston, MA 02129 USA
[2] Univ Med Ctr Goettingen, Dept Expt Neurodegenerat, Gottingen, Germany
来源
CELL REPORTS | 2021年 / 35卷 / 11期
基金
欧洲研究理事会; 芬兰科学院;
关键词
AMYOTROPHIC-LATERAL-SCLEROSIS; INTERACTING PROTEINS; FRONTOTEMPORAL DEMENTIA; PROTEOMIC ANALYSIS; PHASE-TRANSITION; LINKED TDP-43; ALS; MUTATIONS; CELLS; FUS;
D O I
10.1016/j.celrep.2021.109237
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The formation of stress granules (SGs) is an essential aspect of the cellular response to many kinds of stress, but its adaptive role is far from clear. SG dysfunction is implicated in aging-onset neurodegenerative diseases, prompting interest in their physiological function. Here, we report that during starvation stress, SGs interact with mitochondria and regulate metabolic remodeling. We show that SG formation leads to a down-regulation of fatty acid beta-oxidation (FAO) through the modulation of mitochondrial voltage-dependent anion channels (VDACs), which import fatty acids (FAs) into mitochondria. The subsequent decrease in FAO during long-term starvation reduces oxidative damage and rations FAs for longer use. Failure to form SGs, whether caused by the genetic deletion of SG components or an amyotrophic lateral sclerosis (ALS)-associated mutation, translates into an inability to downregulate FAO. Because metabolic dysfunction is a common pathological element of neurodegenerative diseases, including ALS, our findings provide a direction for studying the clinical relevance of SGs.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Improving diagnosis of mitochondrial fatty-acid oxidation disorders
    Christine Vianey-Saban
    Alain Fouilhoux
    Jerry Vockley
    Cécile Acquaviva-Bourdain
    Nathalie Guffon
    European Journal of Human Genetics, 2023, 31 : 265 - 272
  • [42] Mitochondrial fatty acid oxidation disorders: Phenotypes, enzymology, and pathophysiology
    Wanders, R. J. A.
    Wijburg, F. A.
    Duran, M.
    Wateham, H. R.
    Houten, S. M.
    JOURNAL OF INHERITED METABOLIC DISEASE, 2006, 29 : 11 - 11
  • [43] Mitochondrial fatty acid oxidation defects-remaining challenges
    Gregersen, Niels
    Andresen, Brage S.
    Pedersen, Christina B.
    Olsen, Rikke K. J.
    Corydon, Thomas J.
    Bross, Peter
    JOURNAL OF INHERITED METABOLIC DISEASE, 2008, 31 (05) : 643 - 657
  • [44] New therapeutic approaches in mitochondrial fatty acid oxidation disorders
    Labarthe, F.
    ARCHIVES DE PEDIATRIE, 2008, 15 (05): : 608 - 610
  • [45] THE INBORN-ERRORS OF MITOCHONDRIAL FATTY-ACID OXIDATION
    VIANEYLIAUD, C
    DIVRY, P
    GREGERSEN, N
    MATHIEU, M
    JOURNAL OF INHERITED METABOLIC DISEASE, 1987, 10 : 159 - 198
  • [46] Cardiologic evaluation of Turkish mitochondrial fatty acid oxidation disorders
    Balci, Mehmet Cihan
    Karaca, Meryem
    Ergul, Yakup
    Omeroglu, Rukiye Eker
    Demirkol, Mubeccel
    Gokcay, Gulden Fatma
    PEDIATRICS INTERNATIONAL, 2022, 64 (01)
  • [47] Prenatal diagnosis of disorders of fatty acid transport and mitochondrial oxidation
    Rinaldo, P
    Studinski, AL
    Matern, D
    PRENATAL DIAGNOSIS, 2001, 21 (01) : 52 - 54
  • [48] Mitochondrial fatty acid oxidation disorders and cyclic vomiting syndrome
    Rinaldo, P
    DIGESTIVE DISEASES AND SCIENCES, 1999, 44 (08) : 97S - 102S
  • [49] OCCURRENCE AND ROLE OF INTERMEDIATES IN MITOCHONDRIAL FATTY-ACID OXIDATION
    STANLEY, KK
    TUBBS, PK
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1974, 2 (06) : 1218 - 1220
  • [50] COMBINED ENZYME DEFECT OF MITOCHONDRIAL FATTY-ACID OXIDATION
    JACKSON, S
    KLER, RS
    BARTLETT, K
    BRIGGS, H
    BINDOFF, LA
    POURFARZAM, M
    GARDNERMEDWIN, D
    TURNBULL, DM
    JOURNAL OF CLINICAL INVESTIGATION, 1992, 90 (04): : 1219 - 1225