Stress granules inhibit fatty acid oxidation by modulating mitochondrial permeability

被引:31
|
作者
Amen, Triana [2 ]
Kaganovich, Daniel [1 ,2 ]
机构
[1] 1Base Pharmaceut, Boston, MA 02129 USA
[2] Univ Med Ctr Goettingen, Dept Expt Neurodegenerat, Gottingen, Germany
来源
CELL REPORTS | 2021年 / 35卷 / 11期
基金
欧洲研究理事会; 芬兰科学院;
关键词
AMYOTROPHIC-LATERAL-SCLEROSIS; INTERACTING PROTEINS; FRONTOTEMPORAL DEMENTIA; PROTEOMIC ANALYSIS; PHASE-TRANSITION; LINKED TDP-43; ALS; MUTATIONS; CELLS; FUS;
D O I
10.1016/j.celrep.2021.109237
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The formation of stress granules (SGs) is an essential aspect of the cellular response to many kinds of stress, but its adaptive role is far from clear. SG dysfunction is implicated in aging-onset neurodegenerative diseases, prompting interest in their physiological function. Here, we report that during starvation stress, SGs interact with mitochondria and regulate metabolic remodeling. We show that SG formation leads to a down-regulation of fatty acid beta-oxidation (FAO) through the modulation of mitochondrial voltage-dependent anion channels (VDACs), which import fatty acids (FAs) into mitochondria. The subsequent decrease in FAO during long-term starvation reduces oxidative damage and rations FAs for longer use. Failure to form SGs, whether caused by the genetic deletion of SG components or an amyotrophic lateral sclerosis (ALS)-associated mutation, translates into an inability to downregulate FAO. Because metabolic dysfunction is a common pathological element of neurodegenerative diseases, including ALS, our findings provide a direction for studying the clinical relevance of SGs.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Mitochondrial fatty acid β-oxidation in the retinal pigment epithelium
    Tyni, T
    Johnson, M
    Eaton, S
    Pourfarzam, M
    Andrews, R
    Turnbull, DM
    PEDIATRIC RESEARCH, 2002, 52 (04) : 595 - 600
  • [22] Ghrelin reduces hepatic mitochondrial fatty acid β oxidation
    Rigault, C.
    Le Borgne, F.
    Georges, B.
    Demarquoy, J.
    JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2007, 30 (04) : RC4 - RC8
  • [23] OCCURRENCE OF INTERMEDIATES IN MITOCHONDRIAL FATTY-ACID OXIDATION
    STANLEY, KK
    TUBBS, PK
    FEBS LETTERS, 1974, 39 (03) : 325 - 328
  • [24] A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation
    Houten, Sander Michel
    Wanders, Ronald J. A.
    JOURNAL OF INHERITED METABOLIC DISEASE, 2010, 33 (05) : 469 - 477
  • [25] INHERITED DEFECTS OF MITOCHONDRIAL FATTY-ACID OXIDATION
    TURNBULL, DM
    SHEPHERD, IM
    AYNSLEYGREEN, A
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1988, 16 (03) : 424 - 427
  • [26] Ghrelin reduces hepatic mitochondrial fatty acid β oxidation
    C. Rigault
    F. Le Borgne
    B. Georges
    J. Demarquoy
    Journal of Endocrinological Investigation, 2007, 30 : RC4 - RC8
  • [27] ROLE OF INTERMEDIATES IN MITOCHONDRIAL FATTY-ACID OXIDATION
    STANLEY, KK
    TUBBS, PK
    BIOCHEMICAL JOURNAL, 1975, 150 (01) : 77 - 88
  • [28] Mitochondrial Fatty Acid β-Oxidation in the Retinal Pigment Epithelium
    Tiina Tyni
    Margaret Johnson
    Simon Eaton
    Morteza Pourfarzam
    Richard Andrews
    Douglass M Turnbull
    Pediatric Research, 2002, 52 (4) : 595 - 600
  • [29] Prenatal diagnosis of mitochondrial fatty acid oxidation defects
    Nada, MA
    VianeySaban, C
    Roe, CR
    Ding, JH
    Mathieu, M
    Wappner, RS
    Bialer, MG
    McGlynn, JA
    Mandon, G
    PRENATAL DIAGNOSIS, 1996, 16 (02) : 117 - 124
  • [30] Strategies for the diagnosis of mitochondrial fatty acid β-oxidation disorders
    Sim, KG
    Hammond, J
    Wilcken, B
    CLINICA CHIMICA ACTA, 2002, 323 (1-2) : 37 - 58