Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models

被引:11
|
作者
Chan, Ron Tat Lung [1 ]
机构
[1] Univ London, Royal Docks Business Sch, Docklands Campus 4-6 Univ Way, London E16 2RD, England
关键词
Adaptive method; Levy processes; Option pricing; Parabolic partial integro-differential equations; Singularity; Radial basis function; The Merton jump-diffusions model; BASIS FUNCTION INTERPOLATION; DATA APPROXIMATION SCHEME; MULTIQUADRICS; RETURNS;
D O I
10.1007/s10614-016-9563-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
The aim of this paper is to show that option prices in jump-diffusion models can be computed using meshless methods based on radial basis function (RBF) interpolation instead of traditional mesh-based methods like finite differences or finite elements. The RBF technique is demonstrated by solving the partial integro-differential equation for American and European options on non-dividend-paying stocks in the Merton jump-diffusion model, using the inverse multiquadric radial basis function. The method can in principle be extended to L,vy-models. Moreover, an adaptive method is proposed to tackle the accuracy problem caused by a singularity in the initial condition so that the accuracy in option pricing in particular for small time to maturity can be improved.
引用
收藏
页码:623 / 643
页数:21
相关论文
共 50 条
  • [21] Reduced order models for pricing European and American options under stochastic volatility and jump-diffusion models
    Balajewicz, Maciej
    Toivanen, Jari
    JOURNAL OF COMPUTATIONAL SCIENCE, 2017, 20 : 198 - 204
  • [22] Pricing Bermudan options under Merton jump-diffusion asset dynamics
    Cong, F.
    Oosterlee, C. W.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (12) : 2406 - 2432
  • [23] Analytical pricing of vulnerable options under a generalized jump-diffusion model
    Fard, Farzad Alavi
    INSURANCE MATHEMATICS & ECONOMICS, 2015, 60 : 19 - 28
  • [24] PRICING VULNERABLE AMERICAN PUT OPTIONS UNDER JUMP-DIFFUSION PROCESSES
    Wang, Guanying
    Wang, Xingchun
    Liu, Zhongyi
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2017, 31 (02) : 121 - 138
  • [25] Pricing Average and Spread Options Under Local-Stochastic Volatility Jump-Diffusion Models
    Shiraya, Kenichiro
    Takahashi, Akihiko
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (01) : 303 - 333
  • [26] Implicit-explicit high-order methods for pricing options under Merton's jump-diffusion models
    Chen, Yingzi
    Wang, Wansheng
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,
  • [27] An efficient variable step-size method for options pricing under jump-diffusion models with nonsmooth payoff function
    Wang, Wansheng
    Mao, Mengli
    Wang, Zheng
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (03): : 913 - 938
  • [28] AMERICAN OPTIONS AND JUMP-DIFFUSION MODELS
    ZHANG, XL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 857 - 862
  • [29] Pricing pension plans under jump-diffusion models for the salary
    Carmen Calvo-Garrido, M.
    Vazquez, Carlos
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 1933 - 1944
  • [30] Efficient pricing of options in jump-diffusion models: Novel implicit-explicit methods for numerical valuation
    Maurya, Vikas
    Singh, Ankit
    Yadav, Vivek S.
    Rajpoot, Manoj K.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 217 : 202 - 225