Adaptive Radial Basis Function Methods for Pricing Options Under Jump-Diffusion Models

被引:11
|
作者
Chan, Ron Tat Lung [1 ]
机构
[1] Univ London, Royal Docks Business Sch, Docklands Campus 4-6 Univ Way, London E16 2RD, England
关键词
Adaptive method; Levy processes; Option pricing; Parabolic partial integro-differential equations; Singularity; Radial basis function; The Merton jump-diffusions model; BASIS FUNCTION INTERPOLATION; DATA APPROXIMATION SCHEME; MULTIQUADRICS; RETURNS;
D O I
10.1007/s10614-016-9563-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
The aim of this paper is to show that option prices in jump-diffusion models can be computed using meshless methods based on radial basis function (RBF) interpolation instead of traditional mesh-based methods like finite differences or finite elements. The RBF technique is demonstrated by solving the partial integro-differential equation for American and European options on non-dividend-paying stocks in the Merton jump-diffusion model, using the inverse multiquadric radial basis function. The method can in principle be extended to L,vy-models. Moreover, an adaptive method is proposed to tackle the accuracy problem caused by a singularity in the initial condition so that the accuracy in option pricing in particular for small time to maturity can be improved.
引用
收藏
页码:623 / 643
页数:21
相关论文
共 50 条
  • [11] Pricing options in jump-diffusion models: An extrapolation approach
    Feng, Liming
    Linetsky, Vadim
    OPERATIONS RESEARCH, 2008, 56 (02) : 304 - 325
  • [12] PRICING BASKET AND ASIAN OPTIONS UNDER THE JUMP-DIFFUSION PROCESS
    Bae, Kwangil
    Kang, Jangkoo
    Kim, Hwa-Sung
    JOURNAL OF FUTURES MARKETS, 2011, 31 (09) : 830 - 854
  • [13] The pricing of foreign currency options under jump-diffusion processes
    Ahn, Chang Mo
    Cho, D. Chinhyung
    Park, Keehwan
    JOURNAL OF FUTURES MARKETS, 2007, 27 (07) : 669 - 695
  • [14] Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-Diffusion Models
    Balajewicz, Maciej
    Toivanen, Jari
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 734 - 743
  • [15] Finite Volume Method for Pricing European and American Options under Jump-Diffusion Models
    Gan, Xiao-Ting
    Yin, Jun-Feng
    Guo, Yun-Xiang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (02) : 227 - 247
  • [16] An RBF-FD method for pricing American options under jump-diffusion models
    Haghi, Majid
    Mollapourasl, Reza
    Vanmaele, Michele
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (10) : 2434 - 2459
  • [17] Comparison and survey of finite difference methods for pricing American options under finite activity jump-diffusion models
    Salmi, Santtu
    Toivanen, Jari
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (09) : 1112 - 1134
  • [18] Asian options pricing in Hawkes-type jump-diffusion models
    Brignone, Riccardo
    Sgarra, Carlo
    ANNALS OF FINANCE, 2020, 16 (01) : 101 - 119
  • [19] Pricing Forward Starting Options in Double Exponential Jump-diffusion Models
    Yang, Jianqi
    Zhao, Shoujuan
    2011 INTERNATIONAL CONFERENCE ON ECONOMIC, EDUCATION AND MANAGEMENT (ICEEM2011), VOL II, 2011, : 240 - 243
  • [20] Asian options pricing in Hawkes-type jump-diffusion models
    Riccardo Brignone
    Carlo Sgarra
    Annals of Finance, 2020, 16 : 101 - 119