Snapshot Coherence Tomographic Imaging

被引:10
|
作者
Qiao, Mu [1 ]
Sun, Yangyang [2 ,3 ]
Ma, Jiawei [4 ]
Meng, Ziyi [5 ]
Liu, Xuan [6 ]
Yuan, Xin [7 ]
机构
[1] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Zhejiang, Peoples R China
[2] Appl Mat Inc, Santa Clara, CA 95054 USA
[3] Univ Cent Florida, Coll Opt & Photon CREOL, Orlando, FL 32816 USA
[4] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[5] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[6] New Jersey Inst Technol, Dept ECE, Newark, NJ 07102 USA
[7] Bell Labs, Murray Hill, NJ 07974 USA
关键词
Compressive sensing; deep learning; computational imaging; coded aperture; interferometer; 3D imaging; SIGNAL RECONSTRUCTION; ALGORITHMS; PRINCIPLES; FRAMES;
D O I
10.1109/TCI.2021.3089828
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a high-throughput computation-efficient snapshot coherence tomographic imaging method by combining interferometric coding and compressive sampling. We first encode the depth distribution of a three-dimensional (3D) object into the spectrum of a light field, using the principle of optical coherence tomography (OCT), i.e., through a Michaelson interferometer, which generates an intermediate (x, y, lambda) data-cube that encodes the raw (x, y, z) data of the object. We then sample the spectral data using a well-established compressive spectral imaging technique, called the coded aperture snapshot spectral imaging (CASSI), which yields a compressed 2D (x, y) measurement that captures the whole 3D tomographic information of the object. Finally, a developed iterative algorithm and end-to-end deep learning network are used for tomographic reconstruction from the single 2D measurement. Such integration of OCT and CASSI leads to a physically simple and computationally efficient system, allowing us to implement a large data size of more than 2000 x 2000 pixels in the transverse dimensions and up to 200 pixels (depth slices) in the axial dimension. Owning to the interferometry-based depth sensing mechanism, we achieve a high axial resolution of up to 13 mu m within an axial field of view of 1.6 mm. Video-rate visualization of dynamic 3D objects at micrometer scale are shown through several examples.
引用
收藏
页码:624 / 637
页数:14
相关论文
共 50 条
  • [41] Ultra-Widefield Optical Coherence Tomographic Imaging of Posterior Vitreous in Eyes With High Myopia
    Takahashi, Hiroyuki
    Tanaka, Noriko
    Shinohara, Kosei
    Yokoi, Tae
    Yoshida, Takeshi
    Uramoto, Kengo
    Ohno-Matsui, Kyoko
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 206 : 102 - 112
  • [42] Eccrine poroma: An unusual presentation and evaluation with the use of dermoscopy and optical-coherence tomographic imaging
    Bleicher, Brady
    Schwartz, Michelle
    Levine, Amanda
    Markowitz, Orit
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2018, 79 (03) : AB115 - AB115
  • [43] Pressure spectra from single-snapshot tomographic PIV
    Schneiders, Jan F. G.
    Avallone, Francesco
    Probsting, Stefan
    Ragni, Daniele
    Scarano, Fulvio
    EXPERIMENTS IN FLUIDS, 2018, 59 (03)
  • [44] Pressure spectra from single-snapshot tomographic PIV
    Jan F. G. Schneiders
    Francesco Avallone
    Stefan Pröbsting
    Daniele Ragni
    Fulvio Scarano
    Experiments in Fluids, 2018, 59
  • [45] Snapshot hyperspectral imaging in ophthalmology
    Johnson, William R.
    Wilson, Daniel W.
    Fink, Wolfgang
    Humayun, Mark
    Bearman, Greg
    JOURNAL OF BIOMEDICAL OPTICS, 2007, 12 (01)
  • [46] Tunable snapshot imaging spectrometer
    Tebow, CP
    Dereniak, EL
    Garrood, D
    Dorschner, TA
    Volin, CE
    IMAGING SPECTROMETRY IX, 2003, 5159 : 64 - 72
  • [47] APPROACH TO EQUILIBRIUM IN SNAPSHOT IMAGING
    JONES, RA
    RINCK, PA
    MAGNETIC RESONANCE IMAGING, 1990, 8 (06) : 797 - 803
  • [48] Snapshot Spectral Imaging System
    Arnold, Thomas
    De Biasio, Martin
    McGunnigle, Gerald
    Leitner, Raimund
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XVII, 2010, 7570
  • [49] Sampling for Snapshot Compressive Imaging
    Hu, Minghao
    Wu, Zongliang
    Huang, Qian
    Yuan, Xin
    Brady, David
    Intelligent Computing, 2023, 2
  • [50] Ultraspectral Imaging and the Snapshot Advantage
    Kudenov, Michael W.
    Roy, Subharup Gupta
    Pantalone, Brett
    Maione, Bryan
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS VII, 2015, 9467