Snapshot Coherence Tomographic Imaging

被引:10
|
作者
Qiao, Mu [1 ]
Sun, Yangyang [2 ,3 ]
Ma, Jiawei [4 ]
Meng, Ziyi [5 ]
Liu, Xuan [6 ]
Yuan, Xin [7 ]
机构
[1] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Zhejiang, Peoples R China
[2] Appl Mat Inc, Santa Clara, CA 95054 USA
[3] Univ Cent Florida, Coll Opt & Photon CREOL, Orlando, FL 32816 USA
[4] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[5] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[6] New Jersey Inst Technol, Dept ECE, Newark, NJ 07102 USA
[7] Bell Labs, Murray Hill, NJ 07974 USA
关键词
Compressive sensing; deep learning; computational imaging; coded aperture; interferometer; 3D imaging; SIGNAL RECONSTRUCTION; ALGORITHMS; PRINCIPLES; FRAMES;
D O I
10.1109/TCI.2021.3089828
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a high-throughput computation-efficient snapshot coherence tomographic imaging method by combining interferometric coding and compressive sampling. We first encode the depth distribution of a three-dimensional (3D) object into the spectrum of a light field, using the principle of optical coherence tomography (OCT), i.e., through a Michaelson interferometer, which generates an intermediate (x, y, lambda) data-cube that encodes the raw (x, y, z) data of the object. We then sample the spectral data using a well-established compressive spectral imaging technique, called the coded aperture snapshot spectral imaging (CASSI), which yields a compressed 2D (x, y) measurement that captures the whole 3D tomographic information of the object. Finally, a developed iterative algorithm and end-to-end deep learning network are used for tomographic reconstruction from the single 2D measurement. Such integration of OCT and CASSI leads to a physically simple and computationally efficient system, allowing us to implement a large data size of more than 2000 x 2000 pixels in the transverse dimensions and up to 200 pixels (depth slices) in the axial dimension. Owning to the interferometry-based depth sensing mechanism, we achieve a high axial resolution of up to 13 mu m within an axial field of view of 1.6 mm. Video-rate visualization of dynamic 3D objects at micrometer scale are shown through several examples.
引用
收藏
页码:624 / 637
页数:14
相关论文
共 50 条
  • [21] Myopic traction maculopathy: Spectral domain optical coherence tomographic imaging and a hypothesized mechanism
    Smiddy, William E.
    Kim, Sung Soo
    Lujan, Brandon J.
    Gregori, Giovanni
    OPHTHALMIC SURGERY LASERS & IMAGING, 2008, 39 (04) : S90 - S94
  • [22] Hilbert transform relations in frequency-domain optical-coherence tomographic imaging
    Seelamantula, Chandra Sekhar
    Lasse, Theo
    Journal of the Indian Institute of Science, 2013, 93 (01) : 139 - 148
  • [23] Marking Technique for Identification of Optimal Stent Landing Site With Optical Coherence Tomographic Imaging
    Nakamura, Yuichi
    Kataoka, Yu
    Asaumi, Yasuhide
    Noguchi, Teruo
    Yasuda, Satoshi
    JACC-CARDIOVASCULAR INTERVENTIONS, 2018, 11 (10) : E79 - E80
  • [24] Tomographic Imaging Using Photonically Generated Low-Coherence Terahertz Noise Sources
    Isogawa, Takayuki
    Kumashiro, Takuto
    Song, Ho-Jin
    Ajito, Katsuhiro
    Kukutsu, Naoya
    Iwatsuki, Katsumi
    Nagatsuma, Tadao
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2012, 2 (05) : 485 - 492
  • [25] Myopic Traction Maculopathy: Spectral Domain Optical Coherence Tomographic Imaging and a Hypothesized Mechanism
    Smiddy, William E.
    Kim, Sung Soo
    Lujan, Brandon J.
    Gregori, Giovanni
    OPHTHALMIC SURGERY LASERS & IMAGING, 2009, 40 (02) : 169 - 173
  • [26] Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties
    Kling, Sabine
    Akca, Imran B.
    Chang, Ernest W.
    Scarcelli, Giuliano
    Bekesi, Nandor
    Yun, Seok-Hyun
    Marcos, Susana
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (101)
  • [27] Optical coherence tomographic imaging of a bioabsorbable magnesium stent lost in a porcine coronary artery
    Slottow, Tina L. Pinto
    Pakala, Rajbabu
    Lovec, Rachel J.
    Tio, Fermin O.
    Waksman, Ron
    CARDIOVASCULAR REVASCULARIZATION MEDICINE, 2007, 8 (04) : 293 - 294
  • [28] Snapshot imaging spectropolarimeter
    Locke, AM
    Sabatke, DS
    Dereniak, EL
    Descour, MR
    Garcia, JP
    Hamilton, T
    McMillan, RW
    POLARIZATION ANALYSIS, MEASUREMENT, AND REMOTE SENSING IV, 2002, 4481 : 64 - 72
  • [29] Optical Coherence Tomographic Imaging in a Patient with Granulomatosis with Polyangiitis Presenting with Acute Myocardial Infarction
    Khoo, Deanna Z. L.
    Lee, Evelyn
    Ong, Paul Jau Lueng
    Ho, Hee Hwa
    JOURNAL OF RHEUMATOLOGY, 2014, 41 (05) : 971 - 972
  • [30] Spectral imaging in a snapshot
    Harvey, AR
    Fletcher-Holmes, DW
    Gorman, A
    Altenbach, K
    Arlt, J
    Read, ND
    SPECTRAL IMAGING: INSTRUMENTATION, APPLICATIONS, AND ANALYSIS III, 2005, 5694 : 110 - 119