Snapshot Coherence Tomographic Imaging

被引:10
|
作者
Qiao, Mu [1 ]
Sun, Yangyang [2 ,3 ]
Ma, Jiawei [4 ]
Meng, Ziyi [5 ]
Liu, Xuan [6 ]
Yuan, Xin [7 ]
机构
[1] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Zhejiang, Peoples R China
[2] Appl Mat Inc, Santa Clara, CA 95054 USA
[3] Univ Cent Florida, Coll Opt & Photon CREOL, Orlando, FL 32816 USA
[4] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
[5] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[6] New Jersey Inst Technol, Dept ECE, Newark, NJ 07102 USA
[7] Bell Labs, Murray Hill, NJ 07974 USA
关键词
Compressive sensing; deep learning; computational imaging; coded aperture; interferometer; 3D imaging; SIGNAL RECONSTRUCTION; ALGORITHMS; PRINCIPLES; FRAMES;
D O I
10.1109/TCI.2021.3089828
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a high-throughput computation-efficient snapshot coherence tomographic imaging method by combining interferometric coding and compressive sampling. We first encode the depth distribution of a three-dimensional (3D) object into the spectrum of a light field, using the principle of optical coherence tomography (OCT), i.e., through a Michaelson interferometer, which generates an intermediate (x, y, lambda) data-cube that encodes the raw (x, y, z) data of the object. We then sample the spectral data using a well-established compressive spectral imaging technique, called the coded aperture snapshot spectral imaging (CASSI), which yields a compressed 2D (x, y) measurement that captures the whole 3D tomographic information of the object. Finally, a developed iterative algorithm and end-to-end deep learning network are used for tomographic reconstruction from the single 2D measurement. Such integration of OCT and CASSI leads to a physically simple and computationally efficient system, allowing us to implement a large data size of more than 2000 x 2000 pixels in the transverse dimensions and up to 200 pixels (depth slices) in the axial dimension. Owning to the interferometry-based depth sensing mechanism, we achieve a high axial resolution of up to 13 mu m within an axial field of view of 1.6 mm. Video-rate visualization of dynamic 3D objects at micrometer scale are shown through several examples.
引用
收藏
页码:624 / 637
页数:14
相关论文
共 50 条
  • [1] Spatially modulated snapshot computed tomographic polarization imaging spectrometer
    Bo, Jian
    Gu, Yunting
    Xing, Wenhe
    Ju, Xueping
    Yan, Changxiang
    Wang, Xiaodong
    APPLIED OPTICS, 2021, 60 (20) : 5860 - 5866
  • [2] Foveal hypoplasia and optical coherence tomographic imaging
    Kondo, Hiroyuki
    TAIWAN JOURNAL OF OPHTHALMOLOGY, 2018, 8 (04) : 181 - 188
  • [3] A SCSCMOS micromirror for optical coherence tomographic imaging
    Xie, HK
    Pan, YT
    Fedder, GK
    FIFTEENTH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2002, : 495 - 498
  • [4] Development of an optical coherence tomographic system for imaging of tissue
    Liu, JY
    Miyawaki, A
    1999 INTERNATIONAL CONFERENCE ON BIOMEDICAL OPTICS (BMO'99), 1999, 3863 : 220 - 226
  • [5] Spectral domain optical coherence tomographic imaging of geographic atrophy
    Lujan, Brandon J.
    Rosenfeld, Philip J.
    Gregori, Giovanni
    Wang, Fenghua
    Knighton, Robert W.
    Feuer, William J.
    Puliafito, Carmen A.
    OPHTHALMIC SURGERY LASERS & IMAGING, 2008, 39 (04) : S8 - S14
  • [6] Laparoscopic optical coherence tomographic imaging of human ovarian cancer
    Hariri, Lida P.
    Bonnema, Garret T.
    Schmidt, Kathy
    Hatch, Kenneth
    Brewer, Molly
    Barton, Jennifer K.
    ENDOSCOPIC MICROSCOPY III, 2008, 6851
  • [7] Spectral Domain Optical Coherence Tomographic Imaging of Geographic Atrophy
    Lujan, Brandon J.
    Rosenfeld, Philip J.
    Gregori, Giovanni
    Wang, Fenghua
    Knighton, Robert W.
    Feuer, William J.
    Puliafito, Carmen A.
    OPHTHALMIC SURGERY LASERS & IMAGING, 2009, 40 (02) : 96 - 101
  • [8] Nystagmus associated with macular dysplasia optical coherence tomographic imaging
    Wang, Fu-Bin
    STRABISMUS, 2020, 28 (01) : 17 - 19
  • [9] Laparoscopic optical coherence tomographic imaging of human ovarian cancer
    Hariri, Lida P.
    Bonnema, Garret T.
    Schmidt, Kathy
    Korde, Vrushali
    Winkler, Amy M.
    Hatch, Kenneth
    Brewer, Molly
    Barton, Jennifer K.
    ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC SYSTEMS VII, 2009, 7169
  • [10] Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror
    Xie, HK
    Panc, YT
    Fedder, GK
    SENSORS AND ACTUATORS A-PHYSICAL, 2003, 103 (1-2) : 237 - 241