Anaerobic Co-Digestion of Sewage Sludge and Waste in High Solid State

被引:2
|
作者
Aboulfotoh, Ahmed [1 ]
Marie, Ahmed [2 ]
El-hefny, Rehab [2 ]
机构
[1] Zagazig Univ, Fac Engn, Environm Engn Dept, El Zakaz Rd, Zagazig 44519 2, Ash Shargia Gov, Egypt
[2] Benha Univ, Environm Engn Dept, Fac Engn Shubra, Fareed Nada St, Banha, Qalubiya Govern, Egypt
来源
JOURNAL OF ECOLOGICAL ENGINEERING | 2022年 / 23卷 / 06期
关键词
anaerobic co-digestion; thermal pretreatment; hydrolysis; waste; food waste; sludge; FOOD WASTE; ACTIVATED-SLUDGE; THERMAL PRETREATMENT; ORGANIC FRACTION; METHANE PRODUCTION; BIOGAS PRODUCTION; WATER SLUDGE; OPTIMIZATION; HYDROLYSIS; SOLUBILIZATION;
D O I
10.12911/22998993/147835
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, the effect of thermal pre-treatment (TP) on the physical characteristics and co-digestion of a mixture of food waste and sludge was investigated. The food waste (FW) to sewage sludge (SS) ratio used in this research is 1:2 (VS-based) to form a final concentration of 11.20%. The inoculum to substrate ratio was set at 1:1 (volume-based). Undoubtedly, the results show that TP has changed the physical characteristics of the food waste to sewage sludge mixture. The results show that the pretreatment increased the biogas production from 4385 ml for the untreated reactor to 5685 for the reactor R2(140) at 140 degrees C and the improvement in biogas production reaches 29.65% in the reactor R2(140) and the removal of volatile solids was 58.90%. Therefore, after the biomethane potential test, the temperature of 140 degrees C was found to be optimal in the production of biogas. The optimal condition is to use a mixture of pre-treated SS at the temperature of 140 degrees C and untreated FW, so TP is recommended to be used in anaerobic digestion of the mixture of food waste and sewage sludge.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] Performance of Anaerobic Membrane Bioreactors for the Co-digestion of Sewage Sludge and Food Waste
    Dai J.-J.
    Niu C.-X.
    Pan Y.
    Lu X.-Q.
    Zhen G.-Y.
    Zheng C.-T.
    Zhang R.-L.
    He X.-Y.
    Huanjing Kexue/Environmental Science, 2020, 41 (08): : 3740 - 3747
  • [22] Kinetic studies and anaerobic co-digestion of vegetable market waste and sewage sludge
    Anhuradha, S.
    Vijayagopal, V.
    Radha, P.
    Ramanujam, R.
    CLEAN-SOIL AIR WATER, 2007, 35 (02) : 197 - 199
  • [23] Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge
    Kim, SH
    Han, SK
    Shin, HS
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (15) : 1607 - 1616
  • [24] Evaluation of the Anaerobic Co-Digestion of Sewage Sludge and Tomato Waste at Mesophilic Temperature
    Belhadj, Siham
    Joute, Yassine
    El Bari, Hassan
    Serrano, Antonio
    Gil, Aida
    Siles, Jose A.
    Chica, Arturo F.
    Angeles Martin, M.
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 172 (08) : 3862 - 3874
  • [25] Anaerobic co-digestion of sewage sludge and slaughterhouse waste in existing wastewater digesters
    Salehiyoun, Ahmad Reza
    Di Maria, Francesco
    Sharifi, Mohammad
    Norouzi, Omid
    Zilouei, Hamid
    Aghbashlo, Mortaza
    RENEWABLE ENERGY, 2020, 145 : 2503 - 2509
  • [26] Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes
    Sosnowski, P
    Wieczorek, A
    Ledakowicz, S
    ADVANCES IN ENVIRONMENTAL RESEARCH, 2003, 7 (03): : 609 - 616
  • [27] A Review on Performance Improvement of Anaerobic Digestion Using Co-Digestion of Food Waste and Sewage Sludge
    Paranjpe, Archana
    Saxena, Seema
    Jain, Pankaj
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 338
  • [28] Anaerobic co-digestion of sewage sludge and food waste using temperature-phased anaerobic digestion process
    Kim, HW
    Han, SK
    Shin, HS
    WATER SCIENCE AND TECHNOLOGY, 2004, 50 (09) : 107 - 114
  • [29] Synergistic methane production from the anaerobic co-digestion of Spirulina platensis with food waste and sewage sludge at high solid concentrations
    Du, Xinrui
    Tao, Yi
    Li, Huan
    Liu, Yueling
    Feng, Kai
    RENEWABLE ENERGY, 2019, 142 : 55 - 61
  • [30] Co-digestion of pig slaughterhouse waste with sewage sludge
    Borowski, Sebastian
    Kubacki, Przemyslaw
    WASTE MANAGEMENT, 2015, 40 : 119 - 126