Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge

被引:369
|
作者
Kim, SH [1 ]
Han, SK [1 ]
Shin, HS [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Taejon 305701, South Korea
关键词
anaerobic co-digestion; food waste; hydrogen; protein; sewage sludge; VS concentration;
D O I
10.1016/j.ijhydene.2004.02.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anaerobic co-digestion of food waste and sewage sludge for hydrogen production was performed in serum bottles under various volatile solids (VS) concentrations (0.5-5.0%) and mixing ratios of two substrates (0:100-100:0, VS basis). Through response surface methodology, empirical equations for hydrogen evolution were obtained. The specific hydrogen production potential of food waste was higher than that of sewage sludge. However, hydrogen production potential increased as sewage sludge composition increased up to 13-19% at all the VS concentrations. The maximum specific hydrogen production potential of 122.9 ml/g carbohydrate-COD was found at the waste composition of 87:13 (food waste:sewage sludge) and the VS concentration of 3.0%. The relationship between carbohydrate concentration, protein concentration, and hydrogen production potential indicated that enriched protein by adding sewage sludge might enhance hydrogen production potential. The maximum specific hydrogen production rate was 111.2 ml H-2/g VSS/h. Food waste and sewage sludge were, therefore, considered as a suitable main substrate and a useful auxiliary substrate, respectively, for hydrogen production. The metabolic results indicated that the fermentation of organic matters was successfully achieved and the characteristics of the heat-treated seed sludge were similar to those of anaerobic spore-forming bacteria, Clostridium sp. (C) 2004 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1607 / 1616
页数:10
相关论文
共 50 条
  • [1] Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges
    Zhu, Heguang
    Parker, Wayne
    Basnar, Robert
    Proracki, Alexander
    Falletta, Pat
    Beland, Michel
    Seto, Peter
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (14) : 3651 - 3659
  • [2] Anaerobic co-digestion of sewage sludge and food waste
    Prabhu, Meghanath S.
    Mutnuri, Srikanth
    [J]. WASTE MANAGEMENT & RESEARCH, 2016, 34 (04) : 307 - 315
  • [3] Anaerobic Co-digestion of Food Waste for Biohydrogen Production
    Jamil, Zadariana
    Yunus, Nurul Azwa Mohd
    MohamadAnnuar, Mohamad Suffian
    Ibrahim, Shaliza
    [J]. 2013 IEEE BUSINESS ENGINEERING AND INDUSTRIAL APPLICATIONS COLLOQUIUM (BEIAC 2013), 2013, : 284 - 289
  • [4] Investigation on the anaerobic co-digestion of food waste with sewage sludge
    Wang, Yubo
    Wang, Chunxiao
    Wang, Yulin
    Xia, Yu
    Chen, Guanghao
    Zhang, Tong
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (20) : 7755 - 7766
  • [5] Investigation on the anaerobic co-digestion of food waste with sewage sludge
    Yubo Wang
    Chunxiao Wang
    Yulin Wang
    Yu Xia
    Guanghao Chen
    Tong Zhang
    [J]. Applied Microbiology and Biotechnology, 2017, 101 : 7755 - 7766
  • [6] Anaerobic mesophilic co-digestion of sewage sludge with glycerol: Enhanced biohydrogen production
    Rivero, M.
    Solera, R.
    Perez, M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (06) : 2481 - 2488
  • [7] Technical feasibility of anaerobic co-digestion of sewage sludge and municipal solid waste
    Hamzawi, N
    Kennedy, KJ
    McLean, DD
    [J]. ENVIRONMENTAL TECHNOLOGY, 1998, 19 (10) : 993 - 1003
  • [8] Anaerobic co-digestion of coffee waste and sewage sludge
    Neves, L
    Oliveira, R
    Alves, MM
    [J]. WASTE MANAGEMENT, 2006, 26 (02) : 176 - 181
  • [9] Anaerobic Co-Digestion of Food Waste with Sewage Sludge: Simulation and Optimization for Maximum Biogas Production
    Cheong, Wai Lin
    Chan, Yi Jing
    Tiong, Timm Joyce
    Chong, Woon Chan
    Kiatkittipong, Worapon
    Kiatkittipong, Kunlanan
    Mohamad, Mardawani
    Daud, Hanita
    Suryawan, I. Wayan Koko
    Sari, Mega Mutiara
    Lim, Jun Wei
    [J]. WATER, 2022, 14 (07)
  • [10] Two-phase anaerobic co-digestion of food waste and sewage sludge
    Wang, Feng
    Li, Wei-Ying
    Yi, Xue-Nong
    [J]. WATER SCIENCE AND TECHNOLOGY, 2015, 71 (01) : 100 - 106