Dynamics of a new Lorenz-like chaotic system

被引:100
|
作者
Liu, Yongjian [1 ,2 ]
Yang, Qigui [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] Yulin Normal Univ, Dept Math & Computat Sci, Yulin 537000, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaotic system; Center manifold theorem; Degenerate pitchfork; Homoclinic orbit; Heteroclinic orbit; HOPF-BIFURCATION ANALYSIS; CHENS SYSTEM; CANONICAL FORM; LU SYSTEM; SYNCHRONIZATION; ATTRACTOR; STABILITY; EQUATION;
D O I
10.1016/j.nonrwa.2009.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present work is devoted to giving new insights into a new Lorenz-like chaotic system. The local dynamical entities, such as the number of equilibria, the stability of the hyperbolic equilibria and the stability of the non-hyperbolic equilibrium obtained by using the center manifold theorem, the pitchfork bifurcation and the degenerate pitchfork bifurcation, Flopf bifurcations and the local manifold character, are all analyzed when the parameters are varied in the space of parameters. The existence of homoclinic and heteroclinic orbits of the system is also rigorously studied. More exactly, for b >= 2a > 0 and c > 0, we prove that the system has no homoclinic orbit but has two and only two heteroclinic orbits. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2563 / 2572
页数:10
相关论文
共 50 条
  • [41] A Unified Lorenz-Like System and Its Tracking Control
    李春来
    赵益波
    CommunicationsinTheoreticalPhysics, 2015, 63 (03) : 317 - 324
  • [42] Boundary estimation and cascade control for a Lorenz-like system
    Li, Yin
    Zang, Aibin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (15) : 11976 - 11992
  • [43] Hamiltonian Lorenz-like models
    Fedele, Francesco
    Chandre, Cristel
    Horvat, Martin
    Zagar, Nedjeljka
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [44] Analysis of Dynamic Characteristics of a New Lorenz-like Attractor
    Yao, Qiguo
    Su, Yuxiang
    Li, Lili
    PROCEEDINGS OF THE 2017 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTER (MACMC 2017), 2017, 150 : 520 - 525
  • [45] A double-zero bifurcation in a Lorenz-like system
    Algaba, Antonio
    Dominguez-Moreno, M. Cinta
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    NONLINEAR DYNAMICS, 2024, 112 (03) : 2305 - 2330
  • [46] Controlling chaos in a Lorenz-like system using feedback
    Kociuba, G
    Heckenberg, NR
    PHYSICAL REVIEW E, 2003, 68 (06):
  • [47] A double-zero bifurcation in a Lorenz-like system
    Antonio Algaba
    M. Cinta Domínguez-Moreno
    Manuel Merino
    Alejandro J. Rodríguez-Luis
    Nonlinear Dynamics, 2024, 112 : 2305 - 2330
  • [48] LORENZ-LIKE DYNAMICS IN DOPPLER BROADENED COHERENTLY PUMPED LASERS
    CORBALAN, R
    LAGUARTA, F
    PUJOL, J
    VILASECA, R
    OPTICS COMMUNICATIONS, 1989, 71 (05) : 290 - 294
  • [49] On discrete Lorenz-like attractors
    Gonchenko, Sergey
    Gonchenko, Alexander
    Kazakov, Alexey
    Samylina, Evgeniya
    CHAOS, 2021, 31 (02)
  • [50] Qualitative behavior of the Lorenz-like chaotic system describing the flow between two concentric rotating spheres
    Zhang, Fuchen
    Liao, Xiaofeng
    Zhang, Guangyun
    COMPLEXITY, 2016, 21 (S2) : 67 - 72