Dynamics of a new Lorenz-like chaotic system

被引:100
|
作者
Liu, Yongjian [1 ,2 ]
Yang, Qigui [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] Yulin Normal Univ, Dept Math & Computat Sci, Yulin 537000, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaotic system; Center manifold theorem; Degenerate pitchfork; Homoclinic orbit; Heteroclinic orbit; HOPF-BIFURCATION ANALYSIS; CHENS SYSTEM; CANONICAL FORM; LU SYSTEM; SYNCHRONIZATION; ATTRACTOR; STABILITY; EQUATION;
D O I
10.1016/j.nonrwa.2009.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present work is devoted to giving new insights into a new Lorenz-like chaotic system. The local dynamical entities, such as the number of equilibria, the stability of the hyperbolic equilibria and the stability of the non-hyperbolic equilibrium obtained by using the center manifold theorem, the pitchfork bifurcation and the degenerate pitchfork bifurcation, Flopf bifurcations and the local manifold character, are all analyzed when the parameters are varied in the space of parameters. The existence of homoclinic and heteroclinic orbits of the system is also rigorously studied. More exactly, for b >= 2a > 0 and c > 0, we prove that the system has no homoclinic orbit but has two and only two heteroclinic orbits. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2563 / 2572
页数:10
相关论文
共 50 条
  • [21] Fresh Look at Lorenz-like System
    Nguyen, Hang T. T.
    Meleshenko, Peter A.
    Semenov, Mikhail E.
    Kuznetsov, Ilya E.
    Gorlov, Vladimir A.
    Klinskikh, Alexander F.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 2255 - 2259
  • [22] APPLIED SYMBOLIC DYNAMICS FOR THE LORENZ-LIKE MAP
    ZHENG, WM
    PHYSICAL REVIEW A, 1990, 42 (04): : 2076 - 2080
  • [23] A new butterfly-shaped attractor of Lorenz-like system
    Liu, CX
    Liu, L
    Liu, T
    Li, P
    CHAOS SOLITONS & FRACTALS, 2006, 28 (05) : 1196 - 1203
  • [24] Lorenz-like systems and Lorenz-like attractors: Definition, examples, and equivalences
    Letellier, Christophe
    Mendes, Eduardo M. A. M.
    Malasoma, Jean-Marc
    PHYSICAL REVIEW E, 2023, 108 (04)
  • [25] Studying Stochastic Resonance Phenomenon in the Fractional-Order Lorenz-Like Chaotic System
    Zhou, Zuanbo
    Yu, Wenxin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (10):
  • [26] Dynamics of a New Four-Thirds-Degree Sub-Quadratic Lorenz-like System
    Ke, Guiyao
    Pan, Jun
    Hu, Feiyu
    Wang, Haijun
    AXIOMS, 2024, 13 (09)
  • [27] Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
    Márcio R. A. Gouveia
    Marcelo Messias
    Claudio Pessoa
    Nonlinear Dynamics, 2016, 84 : 703 - 713
  • [28] Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
    Gouveia, Marcio R. A.
    Messias, Marcelo
    Pessoa, Claudio
    NONLINEAR DYNAMICS, 2016, 84 (02) : 703 - 713
  • [29] Estimating the Globally Attractive Set and Positively Invariant Set of a New Lorenz-like Chaotic System and Its Applications
    Jian, Jigui
    Tu, Zhengwen
    Yu, Hui
    2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009), 2009, : 241 - 245
  • [30] Stability and Hopf bifurcation of a Lorenz-like system
    Wu, Ranchao
    Fang, Tianbao
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 : 335 - 343