Simulation of plasma processes for microelectronic fabrication

被引:4
|
作者
Brinkman, RP
Kratzer, M
Schmidt, H
机构
[1] Infineon AG, D-81370 Munich, Germany
[2] Tech Univ Munich, Inst Tech Elektrophys, D-8000 Munich, Germany
[3] LMU, Lehrstuhl Numer Math, Munich, Germany
关键词
D O I
10.1351/pac199971101863
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An approach is presented which allows to predict important characteristics of plasma based surface modification techniques like reactive ion etching (RIE), plasma etching (PE), ionized metal vapor deposition (IPVD), or plasma enhanced physical vapor deposition (PECVD). In a first step, the electrical field in the vicinity of the substrate is calculated by means of a self-consistent plasma boundary sheath model. In a second step, this field is used to calculate the energy and angular distribution of the ions impinging the surface. The knowledge of this distribution allows a more realistic prediction of essential process properties like the maximum aspect ratio of an etch process, or the obtainable conformality of a deposition step.
引用
收藏
页码:1863 / 1869
页数:7
相关论文
共 50 条
  • [31] NUMERICAL SIMULATION OF A MICROCHANNEL FOR MICROELECTRONIC COOLING
    Hing, Wong Wai
    Ghazali, Normah Mohd.
    JURNAL TEKNOLOGI, 2007, 46
  • [32] Computer simulation and control of plasma spraying processes
    Kundas, S
    Ilyuschenko, A
    MATERIALS AND MANUFACTURING PROCESSES, 2002, 17 (01) : 85 - 96
  • [33] Computer simulation and control of plasma spraying processes
    Kundas, S
    Ilyuschenko, A
    THERMAL SPRAY 2001: NEW SURFACES FOR A NEW MILLENNIUM, 2001, : 925 - 932
  • [34] Optimization for plasma spraying processes by numerical simulation
    Sato, T
    Solonenko, OP
    Nishiyama, H
    THIN SOLID FILMS, 2002, 407 (1-2) : 54 - 59
  • [35] Simulation of microwave plasma used in optical fibre fabrication
    Janssen, GM
    van Stralen, MJN
    van der Mullen, JAM
    PROGRESS IN PLASMA PROCESSING OF MATERIALS 2001, 2001, : 383 - 388
  • [36] Study of Thermal State of the Main Discharge Simulation Unit of Stationary Plasma Thruster Microelectronic Simulator
    R. V. Akhmetzhanov
    A. P. Vlasenko
    S. V. Gordeev
    E. V. Svetlichnaya
    I. A. Popov
    Russian Aeronautics, 2024, 67 (4): : 852 - 857
  • [37] Laser-plasma sources of ionizing radiation for simulation of radiation effects in microelectronic materials and components
    Tsymbalov I.N.
    Ivanov K.A.
    Volkov R.V.
    Savel’ev A.B.
    Novikov L.S.
    Galanina L.I.
    Chirskaya N.P.
    Bychenkov V.Y.
    Chumakov A.I.
    Inorganic Materials: Applied Research, 2017, 8 (3) : 359 - 363
  • [38] Modeling and simulation for microelectronic materials research
    Liu, CL
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2001, 226 (01): : 47 - 56
  • [39] A cellular automaton methodology for the simulation of integrated circuit fabrication processes
    Sirakoulis, GC
    Karafyllidis, I
    Thanailakis, A
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2002, 18 (05): : 639 - 657
  • [40] THIN-FILM PROCESSES FOR MICROELECTRONIC APPLICATION
    GREGOR, LV
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (10): : 1390 - &