Simulation of plasma processes for microelectronic fabrication

被引:4
|
作者
Brinkman, RP
Kratzer, M
Schmidt, H
机构
[1] Infineon AG, D-81370 Munich, Germany
[2] Tech Univ Munich, Inst Tech Elektrophys, D-8000 Munich, Germany
[3] LMU, Lehrstuhl Numer Math, Munich, Germany
关键词
D O I
10.1351/pac199971101863
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An approach is presented which allows to predict important characteristics of plasma based surface modification techniques like reactive ion etching (RIE), plasma etching (PE), ionized metal vapor deposition (IPVD), or plasma enhanced physical vapor deposition (PECVD). In a first step, the electrical field in the vicinity of the substrate is calculated by means of a self-consistent plasma boundary sheath model. In a second step, this field is used to calculate the energy and angular distribution of the ions impinging the surface. The knowledge of this distribution allows a more realistic prediction of essential process properties like the maximum aspect ratio of an etch process, or the obtainable conformality of a deposition step.
引用
收藏
页码:1863 / 1869
页数:7
相关论文
共 50 条
  • [21] A FABRICATION METHOD FOR THE INTEGRATION OF VACUUM MICROELECTRONIC DEVICES
    ZIMMERMAN, SM
    BABIE, WT
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1991, 38 (10) : 2294 - 2303
  • [22] A multiscale systems approach to microelectronic processes
    Braatz, Richard D.
    Alkire, Richard C.
    Seebauer, Edmund G.
    Drews, Timothy O.
    Rusli, Effendi
    Karulkar, Mohan
    Xue, Feng
    Qin, Yan
    Jung, Michael Y. L.
    Gunawan, Rudiyanto
    COMPUTERS & CHEMICAL ENGINEERING, 2006, 30 (10-12) : 1643 - 1656
  • [23] ORGANIC RESIST MATERIALS FOR MICROELECTRONIC DEVICE FABRICATION
    WILLSON, CG
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1987, 193 : 3 - ACSC
  • [24] Using of Vitreous Chalcogenide Semiconductors in microelectronic fabrication
    Panasyuk, LM
    Chapurin, IV
    Ishimov, VM
    Sidorina, SG
    17TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR SCIENCE AND NEW TECHNOLOGY, PTS 1 AND 2, 1996, 2778 : 115 - 116
  • [25] FOCUSED ION-BEAMS IN MICROELECTRONIC FABRICATION
    DOHERTY, JA
    WARD, BW
    KELLOGG, EM
    IEEE TRANSACTIONS ON COMPONENTS HYBRIDS AND MANUFACTURING TECHNOLOGY, 1983, 6 (03): : 329 - 333
  • [26] PROCESS CONSIDERATIONS FOR THE FABRICATION OF PH MICROELECTRONIC SENSORS
    MOINPOUR, M
    CHEUNG, PW
    LIAO, E
    AW, CY
    BROWN, D
    JOURNAL OF METALS, 1988, 40 (11): : 30 - 30
  • [27] Fabrication of a novel vacuum microelectronic pressure sensor
    Wen, ZY
    Wen, ZQ
    Chen, G
    Xu, SL
    JOURNAL OF MICROLITHOGRAPHY MICROFABRICATION AND MICROSYSTEMS, 2004, 3 (04): : 574 - 578
  • [28] When Energetic Materials, PDMS-Based Elastomers, and Microelectronic Processes Work Together: Fabrication of a Disposable Microactuator
    Suhard, Samuel
    Fau, Pierre
    Chaudret, Bruno
    Sabo-Etienne, Sylviane
    Mauzac, Monique
    Mingotaud, Anne-Francoise
    Ardila-Rodriguez, Gustavo
    Rossi, Carole
    Guimon, Marie-Francoise
    CHEMISTRY OF MATERIALS, 2009, 21 (06) : 1069 - 1076
  • [29] Assessing the Oxidative Degradation of N-Methylpyrrolidone (NMP) in Microelectronic Fabrication Processes by Using a Multiplatform Analytical Approach
    Lennon, Gavin
    Willox, Shannon
    Ramdas, Ragini
    Funston, Scott J.
    Klun, Matthew
    Pieh, Robert
    Fairlie, Stewart
    Dobbin, Sara
    Cobice, Diego F.
    JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY, 2020, 2020
  • [30] PARTICLE SIMULATION OF PLASMA PROCESSES IN THE EARTHS MAGNETOTAIL
    SWIFT, DW
    COMPUTER PHYSICS COMMUNICATIONS, 1988, 49 (01) : 173 - 183