Estimation of heteroscedasticity by local composite quantile regression and matrix decomposition

被引:0
|
作者
Li, Yu-Ning [1 ]
Zhang, Yi [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou, Zhejiang, Peoples R China
关键词
Composite quantile regression; heteroscedastic regression; matrix decomposition; non-crossing quantiles; scale function estimation; 62G08; EFFICIENT; CURVES; MODELS; FACTORIZATION;
D O I
10.1080/10485252.2017.1418869
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a two-step estimation method for nonparametric model with heteroscedasticity to estimate the scale function sigma and the location function m simultaneously. The local composite quantile regression (LCQR) is employed in the first step, and a matrix decomposition method is used to estimate both m and sigma in the second step. We prove the non-crossing property of the LCQR and thereby give an algorithm, named matrix decomposition method, to ensure the non-negativity of the scale function estimator, which is much reasonable since there is no hard constraint or order adjustment to the estimators. Under some mild regularity conditions, the resulting estimator enjoys asymptotic normality. Simulation results demonstrate that a better estimator of the scale function can be obtained in terms of mean square error, no matter the error distribution is symmetric or not. Finally, a real data example is used to illustrate the proposed method.
引用
收藏
页码:291 / 307
页数:17
相关论文
共 50 条
  • [21] Composite quantile regression estimation for P-GARCH processes
    ZHAO Biao
    CHEN Zhao
    TAO GuiPing
    CHEN Min
    [J]. Science China Mathematics, 2016, 59 (05) : 977 - 998
  • [22] Composite quantile regression estimation for P-GARCH processes
    Biao Zhao
    Zhao Chen
    GuiPing Tao
    Min Chen
    [J]. Science China Mathematics, 2016, 59 : 977 - 998
  • [23] Composite change point estimation for bent line quantile regression
    Zhang, Liwen
    Wang, Huixia Judy
    Zhu, Zhongyi
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2017, 69 (01) : 145 - 168
  • [24] Composite change point estimation for bent line quantile regression
    Liwen Zhang
    Huixia Judy Wang
    Zhongyi Zhu
    [J]. Annals of the Institute of Statistical Mathematics, 2017, 69 : 145 - 168
  • [25] Composite quantile regression estimation for P-GARCH processes
    Zhao Biao
    Chen Zhao
    Tao GuiPing
    Chen Min
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (05) : 977 - 998
  • [26] Heteroscedasticity identification and variable selection via multiple quantile regression
    Wang, Mingqiu
    Kang, Xiaoning
    Liang, Jiajuan
    Wang, Kun
    Wu, Yuanshan
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (02) : 297 - 314
  • [27] ESTIMATION OF HETEROSCEDASTICITY IN REGRESSION-ANALYSIS
    MULLER, HG
    STADTMULLER, U
    [J]. ANNALS OF STATISTICS, 1987, 15 (02): : 610 - 625
  • [28] Soil Moisture Estimation Based on Polarimetric Decomposition and Quantile Regression Forests
    Zhang, Li
    Lv, Xiaolei
    Wang, Rui
    [J]. REMOTE SENSING, 2022, 14 (17)
  • [29] Asymptotic normality for a local composite quantile regression estimator of regression function with truncated data
    Wang, Jiang-Feng
    Ma, Wei-Min
    Zhang, Hui-Zeng
    Wen, Li-Min
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (06) : 1571 - 1579
  • [30] Estimation for generalized linear cointegration regression models through composite quantile regression approach
    Liu, Bingqi
    Pang, Tianxiao
    Cheng, Siang
    [J]. FINANCE RESEARCH LETTERS, 2024, 65