Estimation of heteroscedasticity by local composite quantile regression and matrix decomposition

被引:0
|
作者
Li, Yu-Ning [1 ]
Zhang, Yi [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou, Zhejiang, Peoples R China
关键词
Composite quantile regression; heteroscedastic regression; matrix decomposition; non-crossing quantiles; scale function estimation; 62G08; EFFICIENT; CURVES; MODELS; FACTORIZATION;
D O I
10.1080/10485252.2017.1418869
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a two-step estimation method for nonparametric model with heteroscedasticity to estimate the scale function sigma and the location function m simultaneously. The local composite quantile regression (LCQR) is employed in the first step, and a matrix decomposition method is used to estimate both m and sigma in the second step. We prove the non-crossing property of the LCQR and thereby give an algorithm, named matrix decomposition method, to ensure the non-negativity of the scale function estimator, which is much reasonable since there is no hard constraint or order adjustment to the estimators. Under some mild regularity conditions, the resulting estimator enjoys asymptotic normality. Simulation results demonstrate that a better estimator of the scale function can be obtained in terms of mean square error, no matter the error distribution is symmetric or not. Finally, a real data example is used to illustrate the proposed method.
引用
收藏
页码:291 / 307
页数:17
相关论文
共 50 条
  • [1] Weighted composite quantile regression estimation and variable selection for varying coefficient models with heteroscedasticity
    Yang, Hu
    Lv, Jing
    Guo, Chaohui
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (01) : 77 - 94
  • [2] Weighted composite quantile regression estimation and variable selection for varying coefficient models with heteroscedasticity
    Hu Yang
    Jing Lv
    Chaohui Guo
    [J]. Journal of the Korean Statistical Society, 2015, 44 : 77 - 94
  • [3] Local Composite Quantile Regression for Regression Discontinuity
    Huang, Xiao
    Zhan, Zhaoguo
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1863 - 1875
  • [4] Multiple quantile regression analysis of longitudinal data: Heteroscedasticity and efficient estimation
    Cho, Hyunkeun
    Kim, Seonjin
    Kim, Mi-Ok
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 155 : 334 - 343
  • [5] Hybrid quantile regression estimation for time series models with conditional heteroscedasticity
    Zheng, Yao
    Zhu, Qianqian
    Li, Guodong
    Xiao, Zhijie
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (05) : 975 - 993
  • [6] Single-index composite quantile regression with heteroscedasticity and general error distributions
    Jiang, Rong
    Qian, Wei-Min
    Zhou, Zhan-Gong
    [J]. STATISTICAL PAPERS, 2016, 57 (01) : 185 - 203
  • [7] Single-index composite quantile regression with heteroscedasticity and general error distributions
    Rong Jiang
    Wei-Min Qian
    Zhan-Gong Zhou
    [J]. Statistical Papers, 2016, 57 : 185 - 203
  • [8] HAC Covariance Matrix Estimation in Quantile Regression
    Galvao, Antonio F.
    Yoon, Jungmo
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023,
  • [9] Composite support vector quantile regression estimation
    Shim, Jooyong
    Hwang, Changha
    Seok, Kyungha
    [J]. COMPUTATIONAL STATISTICS, 2014, 29 (06) : 1651 - 1665
  • [10] Composite support vector quantile regression estimation
    Jooyong Shim
    Changha Hwang
    Kyungha Seok
    [J]. Computational Statistics, 2014, 29 : 1651 - 1665