HAC Covariance Matrix Estimation in Quantile Regression

被引:0
|
作者
Galvao, Antonio F. [1 ]
Yoon, Jungmo [2 ]
机构
[1] Michigan State Univ, Dept Econ, E Lansing, MI 48824 USA
[2] Hanyang Univ, Coll Econ & Finance, Seoul, South Korea
关键词
Heteroscedasticity and autocorrelation consistent covariance matrix estimation; Quantile regression; Robust standard error; Time-series data; C21; C23; ROBUST STANDARD ERRORS; INFERENCE; HETEROSKEDASTICITY; BOOTSTRAP; KERNEL;
D O I
10.1080/01621459.2023.2257365
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study considers an estimator for the asymptotic variance-covariance matrix in time-series quantile regression models which is robust to the presence of heteroscedasticity and autocorrelation. When regression errors are serially correlated, the conventional quantile regression standard errors are invalid. The proposed solution is a quantile analogue of the Newey-West robust standard errors. We establish the asymptotic properties of the heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimator and provide an optimal bandwidth selection rule. The quantile sample autocorrelation coefficient is biased toward zero in finite sample which adversely affects the optimal bandwidth estimation. We propose a simple alternative estimator that effectively reduces the finite sample bias. Numerical simulations provide evidence that the proposed HAC covariance matrix estimator significantly improves the size distortion problem. To illustrate the usefulness of the proposed robust standard error, we examine the impacts of the expansion of renewable energy resources on electricity prices. Supplementary materials for this article are available online.
引用
收藏
页数:12
相关论文
共 50 条