Heteroscedasticity and autocorrelation consistent covariance matrix estimation;
Quantile regression;
Robust standard error;
Time-series data;
C21;
C23;
ROBUST STANDARD ERRORS;
INFERENCE;
HETEROSKEDASTICITY;
BOOTSTRAP;
KERNEL;
D O I:
10.1080/01621459.2023.2257365
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This study considers an estimator for the asymptotic variance-covariance matrix in time-series quantile regression models which is robust to the presence of heteroscedasticity and autocorrelation. When regression errors are serially correlated, the conventional quantile regression standard errors are invalid. The proposed solution is a quantile analogue of the Newey-West robust standard errors. We establish the asymptotic properties of the heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimator and provide an optimal bandwidth selection rule. The quantile sample autocorrelation coefficient is biased toward zero in finite sample which adversely affects the optimal bandwidth estimation. We propose a simple alternative estimator that effectively reduces the finite sample bias. Numerical simulations provide evidence that the proposed HAC covariance matrix estimator significantly improves the size distortion problem. To illustrate the usefulness of the proposed robust standard error, we examine the impacts of the expansion of renewable energy resources on electricity prices. Supplementary materials for this article are available online.
机构:
Univ London London Sch Econ & Polit Sci, Dept Econ, London WC2A 2AE, EnglandUniv London London Sch Econ & Polit Sci, Dept Econ, London WC2A 2AE, England
机构:
Nankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS & LPMC, Tianjin, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS & LPMC, Tianjin, Peoples R China
Yang, Yaohong
Wang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS & LPMC, Tianjin, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS & LPMC, Tianjin, Peoples R China
Wang, Lei
Liu, Jiamin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol Beijing, Sch Math & Phys, Beijing, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS & LPMC, Tianjin, Peoples R China
Liu, Jiamin
Li, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS & LPMC, Tianjin, Peoples R China
Li, Rui
Lian, Heng
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Hong Kong, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS & LPMC, Tianjin, Peoples R China