Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

被引:124
|
作者
Rejou-Mechain, M. [1 ]
Muller-Landau, H. C. [2 ]
Detto, M. [2 ]
Thomas, S. C. [3 ]
Le Toan, T. [4 ]
Saatchi, S. S. [5 ]
Barreto-Silva, J. S. [6 ]
Bourg, N. A. [7 ]
Bunyavejchewin, S. [8 ]
Butt, N. [9 ,10 ]
Brockelman, W. Y. [11 ]
Cao, M. [12 ]
Cardenas, D. [13 ]
Chiang, J. -M. [14 ]
Chuyong, G. B. [15 ]
Clay, K. [16 ]
Condit, R. [2 ]
Dattaraja, H. S. [17 ]
Davies, S. J. [18 ]
Duque, A. [19 ]
Esufali, S. [20 ]
Ewango, C. [21 ]
Fernando, R. H. S. [22 ]
Fletcher, C. D. [23 ]
Gunatilleke, I. A. U. N. [20 ]
Hao, Z. [24 ]
Harms, K. E. [25 ]
Hart, T. B. [26 ]
Herault, B. [27 ]
Howe, R. W. [28 ]
Hubbell, S. P. [2 ,29 ]
Johnson, D. J. [16 ]
Kenfack, D. [30 ]
Larson, A. J. [31 ]
Lin, L. [12 ]
Lin, Y. [14 ]
Lutz, J. A. [32 ]
Makana, J. -R. [33 ]
Malhi, Y. [9 ]
Marthews, T. R. [9 ]
McEwan, R. W. [34 ]
McMahon, S. M. [35 ,36 ]
McShea, W. J. [7 ]
Muscarella, R. [37 ]
Nathalang, A. [11 ]
Noor, N. S. M. [23 ]
Nytch, C. J. [38 ]
Oliveira, A. A. [39 ]
Phillips, R. P. [16 ]
Pongpattananurak, N. [40 ]
机构
[1] Univ Toulouse 3, Lab Evolut & Divers Biol, UMR5174, CNRS, F-31062 Toulouse, France
[2] Smithsonian Trop Res Inst, Balboa 084303092, Ancon, Panama
[3] Univ Toronto, Fac Forestry, Toronto, ON, Canada
[4] Univ Toulouse 3, IRD, CNES, Ctr Etudes Spatiales Biosphere,CNRS,UMR5126, F-31401 Toulouse, France
[5] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[6] Inst Amazon Invest Cientif SINCHI, Leticia, Amazonas, Colombia
[7] Conservat Ecol Ctr, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA
[8] Res Off, Natl Pk Wildlife & Plant Conservat Dept, Bangkok 10900, Thailand
[9] Univ Oxford, Sch Geog & Environm, Environm Change Inst, Oxford OX1 3QY, England
[10] Univ Queensland, Sch Biol Sci, ARC Ctr Excellence Environm Decis, St Lucia, Qld 4072, Australia
[11] Ecol Lab, Bioresources Technol Unit, Khlongluang 12120, Pathum Thani, Thailand
[12] Chinese Acad Sci, Xishuangbanna Trop Bot Garden, Key Lab Trop Forest Ecol, Kunming 650223, Peoples R China
[13] Inst Amazon Invest Cientif SINCHI, Bogota, Colombia
[14] Tunghai Univ, Dept Life Sci, Taichung 40704, Taiwan
[15] Univ Buea, Dept Bot & Plant Physiol, Buea, Cameroon
[16] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
[17] Indian Inst Sci, Ctr Ecol Sci, Bangalore 560012, Karnataka, India
[18] Smithsonian Trop Res Inst, Smithsonian Inst Global Earth Observ, Ctr Trop Forest Sci, Washington, DC 20012 USA
[19] Univ Nacl Colombia, Dept Ciencias Forest, Medellin, Colombia
[20] Univ Peradeniya, Fac Sci, Dept Bot, Peradeniya, Sri Lanka
[21] Ctr Format & Rech Conservat Forestiere CEFRECOF, Wildlife Conservat Soc, Kinshasa, DEM REP CONGO
[22] Royal Bot Garden, Peradeniya, Sri Lanka
[23] Forest Res Inst Malaysia FRIM, Kepong 52109, Selangor, Malaysia
[24] Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110164, Peoples R China
[25] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
[26] Project TL2, Kinshasa, DEM REP CONGO
[27] Cirad, UMR Ecol Forets Guyane EcoFoG, Kourou 97310, French Guiana
[28] Univ Wisconsin, Dept Nat & Appl Sci, Green Bay, WI 54311 USA
[29] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA
[30] Harvard Univ, CTFS Arnold Arboretum Off, Cambridge, MA 02138 USA
[31] Univ Montana, Coll Forestry & Conservat, Dept Forest Management, Missoula, MT 59812 USA
[32] Utah State Univ, Wildland Resources Dept, Logan, UT 84322 USA
[33] Wildlife Conservat Soc, DRC Program, Kinshasa, DEM REP CONGO
[34] Univ Dayton, Dept Biol, Dayton, OH 45469 USA
[35] Smithsonian Trop Res Inst, Edgewater, MD USA
[36] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA
[37] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY USA
[38] Univ Puerto Rico, Dept Environm Sci, San Juan, PR 00936 USA
[39] Univ Sao Paulo, Inst Biociencias, Dept Ecol, BR-04582050 Sao Paulo, Brazil
[40] Kasetsart Univ, Fac Forestry, Dept Conservat, Bangkok, Thailand
[41] Univ Gottingen, Dept Ecosyst Modelling, D-37073 Gottingen, Germany
[42] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
[43] Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland
[44] Pontificia Univ Catolica Ecuador, Escuela Ciencias Biol, Quito, Ecuador
[45] Inst Nacl de Pesquisas da Amazonia, Manaus, Amazonas, Brazil
[46] Univ Philippines Diliman, Inst Biol, Quezon City 1101, Philippines
基金
美国国家科学基金会;
关键词
ABOVEGROUND BIOMASS; ERROR PROPAGATION; AMAZONIAN FOREST; TROPICAL FOREST; LIVE BIOMASS; DEFORESTATION; REGRESSION; EMISSIONS; DENSITY; MODELS;
D O I
10.5194/bg-11-6827-2014
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
引用
收藏
页码:6827 / 6840
页数:14
相关论文
共 50 条
  • [1] Unveiling spatial variations of high forest live biomass carbon stocks of Gabon using advanced remote sensing techniques
    Sagang, Le Bienfaiteur Takougoum
    Favrichon, Samuel
    Dalagnol, Ricardo
    Ordway, Elsa M.
    Medjibe, Vincent
    Manfoumbi, Francis
    Obame, Conan
    Wagner, Fabien
    George-Chacon, Stephanie
    White, Lee
    Saatchi, Sassan
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (07):
  • [2] Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory
    Roedig, Edna
    Cuntz, Matthias
    Heinke, Jens
    Rammig, Anja
    Huth, Andreas
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2017, 26 (11): : 1292 - 1302
  • [3] Assessment of Carbon Stocks in the Topsoil Using Random Forest and Remote Sensing Images
    Kim, Jongsung
    Grunwald, Sabine
    [J]. JOURNAL OF ENVIRONMENTAL QUALITY, 2016, 45 (06) : 1910 - 1918
  • [4] THE SPATIAL DISTRIBUTION OF FOREST BIOMASS IN CHINA USING REMOTE SENSING AND NATIONAL FOREST INVENTORY
    Du, Ling
    Zhou, Tao
    Zhao, Xiang
    Wu, Hao
    Wu, Donghai
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 737 - 740
  • [5] Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach
    Hickey, S. M.
    Callow, N. J.
    Phinn, S.
    Lovelock, C. E.
    Duarte, C. M.
    [J]. ESTUARINE COASTAL AND SHELF SCIENCE, 2018, 200 : 194 - 201
  • [6] Relating Radar Remote Sensing of Biomass to Modelling of Forest Carbon Budgets
    Thuy Le Toan
    Shaun Quegan
    Ian Woodward
    Mark Lomas
    Nicolas Delbart
    Ghislain Picard
    [J]. Climatic Change, 2004, 67 : 379 - 402
  • [7] Relating radar remote sensing of biomass to modelling of forest carbon budgets
    Le Toan, T
    Quegan, S
    Woodward, I
    Lomas, M
    Delbart, N
    Picard, G
    [J]. CLIMATIC CHANGE, 2004, 67 (2-3) : 379 - 402
  • [8] Estimation of Aboveground Forest Biomass Carbon Stock by Satellite Remote Sensing
    Jung, Jaehoon
    Nguyen, Hieu Cong
    Heo, Joon
    Kim, Kyoungmin
    Im, Jungho
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2014, 30 (05) : 651 - 664
  • [9] PHYTOSOCIOLOGICAL STRUCTURE, VOLUME STOCKS, BIOMASS, CARBON AND CARBON DIOXIDE IN SEASONAL SEMIDECIDUOS FOREST
    de Souza, Agostinho Lopes
    Boina, Aline
    Boechat Soares, Carlos Pedro
    Vital, Benedito Rocha
    Gaspar, Ricardo de Oliveira
    de Lana, Jacinto Moreira
    [J]. REVISTA ARVORE, 2012, 36 (01): : 169 - 179
  • [10] Spatial Vertical Distribution Rule Analysis of Forest Biomass Based on Remote Sensing
    Yang, Jinling
    Cao, Xiange
    Fan, Wenyi
    Li, Mingze
    [J]. PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 9 (ICCSIT 2010), 2010, : 593 - 595