Estimation of Aboveground Forest Biomass Carbon Stock by Satellite Remote Sensing

被引:4
|
作者
Jung, Jaehoon [1 ]
Nguyen, Hieu Cong [1 ]
Heo, Joon [1 ]
Kim, Kyoungmin [2 ]
Im, Jungho [3 ]
机构
[1] Yonsei Univ, Sch Civil & Environm Engn, Seoul, South Korea
[2] Korea Forest Res Inst, Ctr Forest & Climate Change, Seoul, South Korea
[3] Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, Ulsan, South Korea
关键词
k-Nearest Neighbor; Regression Tree Analysis; National Forest Inventory; Landsat TM; Aster; Carbon stock estimation;
D O I
10.7780/kjrs.2014.30.5.10
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Recently, the demands of accurate forest carbon stock estimation and mapping are increasing in Korea. This study investigates the feasibility of two methods, k-Nearest Neighbor (kNN) and Regression Tree Analysis (RTA), for carbon stock estimation of pilot areas, Gongju and Sejong cities. The 3rd and 5th similar to 6th NFI data were collected together with Landsat TM acquired in 1992, 2010 and Aster in 2009. Additionally, various vegetation indices and tasseled cap transformation were created for better estimation. Comparison between two methods was conducted by evaluating carbon statistics and visualizing carbon distributions on the map. The comparisons indicated clear strengths and weaknesses of two methods: kNN method has produced more consistent estimates regardless of types of satellite images, but its carbon maps were somewhat smooth to represent the dense carbon areas, particularly for Aster 2009 case. Meanwhile, RTA method has produced better performance on mean bias results and representation of dense carbon areas, but they were more subject to types of satellite images, representing high variability in spatial patterns of carbon maps. Finally, in order to identify the increases in carbon stock of study area, we created the difference maps by subtracting the 1992 carbon map from the 2009 and 2010 carbon maps. Consequently, it was found that the total carbon stock in Gongju and Sejong cities was drastically increased during that period.
引用
收藏
页码:651 / 664
页数:14
相关论文
共 50 条
  • [1] Stratified aboveground forest biomass estimation by remote sensing data
    Latifi, Hooman
    Fassnacht, Fabian E.
    Hartig, Florian
    Berger, Christian
    Hernandez, Jaime
    Corvalan, Patricio
    Koch, Barbara
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 38 : 229 - 241
  • [2] Remote Sensing Estimation of Grassland Aboveground Biomass based on Random Forest
    Xing, Xiaoyu
    Yang, Xiuchun
    Xu, Bin
    Jin, Yunxiang
    Guo, Jian
    Chen, Ang
    Yang, Dong
    Wang, Ping
    Zhu, Libo
    [J]. Journal of Geo-Information Science, 2021, 23 (07) : 1312 - 1324
  • [3] Carbon sinks and tropical forest biomass estimation: a review on role of remote sensing in aboveground-biomass modelling
    Zaki, Nurul Ain Mohd
    Abd Latif, Zulkiflee
    [J]. GEOCARTO INTERNATIONAL, 2017, 32 (07) : 701 - 716
  • [4] Remote sensing of aboveground forest biomass: A review
    Timothy, Dube
    Onisimo, Mutanga
    Cletah, Shoko
    Adelabu, Samuel
    Tsitsi, Bangira
    [J]. TROPICAL ECOLOGY, 2016, 57 (02) : 125 - 132
  • [5] Estimation of aboveground biomass and carbon in a tropical rain forest in Gabon using remote sensing and GPS data
    Goita, Kalifa
    Mouloungou, Jacques
    Benie, Goze Bertin
    [J]. GEOCARTO INTERNATIONAL, 2019, 34 (03) : 243 - 259
  • [6] Optimization of Samples for Remote Sensing Estimation of Forest Aboveground Biomass at the Regional Scale
    Shu, Qingtai
    Xi, Lei
    Wang, Keren
    Xie, Fuming
    Pang, Yong
    Song, Hanyue
    [J]. REMOTE SENSING, 2022, 14 (17)
  • [7] Remote Sensing Estimation of Forest Aboveground Biomass Based on Lasso-SVR
    Wang, Ping
    Tan, Sanqing
    Zhang, Gui
    Wang, Shuang
    Wu, Xin
    [J]. FORESTS, 2022, 13 (10):
  • [8] Estimation of Aboveground Biomass at Species Level in Tropical Rain Forest Using High Resolution Remote Sensing Satellite Data
    Ali, Hamzah Mohd
    Rasib, Abd Wahid
    Amran, Nur Fatihah
    Omar, Hamdan
    Kassim, Abdul Rahman
    Faidi, Azahari
    Rahman, Muhammad Zulkarnain Abdul
    Shin, Alvin Lau Meng
    Yusof, Abdul Razak Mohd
    Dollah, Rozilawati
    Ahmad, Asmala
    [J]. PROCEEDINGS OF INNOVATIVE RESEARCH AND INDUSTRIAL DIALOGUE 2018 (IRID'18), 2019, : 222 - 223
  • [9] Forest Aboveground Biomass Estimation and Response to Climate Change Based on Remote Sensing Data
    Li, Yingchang
    Li, Mingyang
    Wang, Yuehui
    [J]. SUSTAINABILITY, 2022, 14 (21)
  • [10] Remote Sensing Estimation of Bamboo Forest Aboveground Biomass Based on Geographically Weighted Regression
    Wang, Jingyi
    Du, Huaqiang
    Li, Xuejian
    Mao, Fangjie
    Zhang, Meng
    Liu, Enbin
    Ji, Jiayi
    Kang, Fangfang
    [J]. REMOTE SENSING, 2021, 13 (15)