Assessment of Carbon Stocks in the Topsoil Using Random Forest and Remote Sensing Images

被引:25
|
作者
Kim, Jongsung [1 ]
Grunwald, Sabine [2 ]
机构
[1] Korea Inst Civil Engn & Bldg Technol, ICT Convergence & Integrat Res Dept, Goyang 10223, South Korea
[2] Univ Florida, Soil & Water Sci Dept, 2181 McCarty Hall,POB 110290, Gainesville, FL 32611 USA
关键词
SOIL ORGANIC-CARBON; FRESH-WATER WETLANDS; SPATIAL-DISTRIBUTION; EVERGLADES; CLIMATE; SENSITIVITY; PHOSPHORUS; TEMPERATURE; VARIABILITY; ECOSYSTEM;
D O I
10.2134/jeq2016.03.0076
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wetland soils are able to exhibit both consumption and production of greenhouse gases, and they play an important role in the regulation of the global carbon (C) cycle. Still, it is challenging to accurately evaluate the actual amount of C stored in wetlands. The incorporation of remote sensing data into digital soil models has great potential to assess C stocks in wetland soils. Our objectives were (i) to develop C stock prediction models utilizing remote sensing images and environmental ancillary data, (ii) to identify the prime environmental predictor variables that explain the spatial distribution of soil C, and (iii) to assess the amount of C stored in the top 20-cm soils of a prominent nutrient-enriched wetland. We collected a total of 108 soil cores at two soil depths (0-10 cm and 10-20 cm) in the Water Conservation Area 2A, FL. We developed random forest models to predict soil C stocks using field observation data, environmental ancillary data, and spectral data derived from remote sensing images, including Satellite Pour l'Observation de la Terre (spatial resolution: 10 m), Landsat Enhanced Thematic Mapper Plus (30 m), and Moderate Resolution Imaging Spectroradiometer (250 m). The random forest models showed high performance to predict C stocks, and variable importance revealed that hydrology was the major environmental factor explaining the spatial distribution of soil C stocks in Water Conservation Area 2A. Our results showed that this area stores about 4.2 Tg (4.2 Mt) of C in the top 20-cm soils.
引用
收藏
页码:1910 / 1918
页数:9
相关论文
共 50 条
  • [1] Predicting Soil Organic Carbon and Soil Nitrogen Stocks in Topsoil of Forest Ecosystems in Northeastern China Using Remote Sensing Data
    Wang, Shuai
    Zhuang, Qianlai
    Jin, Xinxin
    Yang, Zijiao
    Liu, Hongbin
    [J]. REMOTE SENSING, 2020, 12 (07)
  • [2] Extracting the Forest Type From Remote Sensing Images by Random Forest
    Li Linhui
    Jing Weipeng
    Wang Huihui
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (16) : 17447 - 17454
  • [3] Using hyperspectral remote sensing data for the assessment of topsoil organic carbon from agricultural soils
    Siegmann, Bastian
    Jarmer, Thomas
    Selige, Thomas
    Lilienthal, Holger
    Richter, Nicole
    Hoefle, Bernhard
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XIV, 2012, 8531
  • [4] Land cover change assessment using random forest and CA markov from remote sensing images in the protected forest of South Malang, Indonesia
    Purwanto
    Latifah, Siti
    Yonariza
    Akhsani, Farid
    Sofiana, Eva Indra
    Ferdiansah, Mohammad Riski
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 32
  • [5] Remote sensing assessment of carbon storage by urban forest
    Kanniah, K. D.
    Muhamad, N.
    Kang, C. S.
    [J]. 8TH INTERNATIONAL SYMPOSIUM OF THE DIGITAL EARTH (ISDE8), 2014, 18
  • [6] Mapping stocks of soil total nitrogen using remote sensing data: A comparison of random forest models with different predictors
    Zhang, Yue
    Sui, Biao
    Shen, Haiou
    Ouyang, Ling
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 160 : 23 - 30
  • [7] Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change
    Goetz, Scott
    Dubayah, Ralph
    [J]. CARBON MANAGEMENT, 2011, 2 (03) : 231 - 244
  • [8] Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks
    Rejou-Mechain, M.
    Muller-Landau, H. C.
    Detto, M.
    Thomas, S. C.
    Le Toan, T.
    Saatchi, S. S.
    Barreto-Silva, J. S.
    Bourg, N. A.
    Bunyavejchewin, S.
    Butt, N.
    Brockelman, W. Y.
    Cao, M.
    Cardenas, D.
    Chiang, J. -M.
    Chuyong, G. B.
    Clay, K.
    Condit, R.
    Dattaraja, H. S.
    Davies, S. J.
    Duque, A.
    Esufali, S.
    Ewango, C.
    Fernando, R. H. S.
    Fletcher, C. D.
    Gunatilleke, I. A. U. N.
    Hao, Z.
    Harms, K. E.
    Hart, T. B.
    Herault, B.
    Howe, R. W.
    Hubbell, S. P.
    Johnson, D. J.
    Kenfack, D.
    Larson, A. J.
    Lin, L.
    Lin, Y.
    Lutz, J. A.
    Makana, J. -R.
    Malhi, Y.
    Marthews, T. R.
    McEwan, R. W.
    McMahon, S. M.
    McShea, W. J.
    Muscarella, R.
    Nathalang, A.
    Noor, N. S. M.
    Nytch, C. J.
    Oliveira, A. A.
    Phillips, R. P.
    Pongpattananurak, N.
    [J]. BIOGEOSCIENCES, 2014, 11 (23) : 6827 - 6840
  • [9] Unveiling spatial variations of high forest live biomass carbon stocks of Gabon using advanced remote sensing techniques
    Sagang, Le Bienfaiteur Takougoum
    Favrichon, Samuel
    Dalagnol, Ricardo
    Ordway, Elsa M.
    Medjibe, Vincent
    Manfoumbi, Francis
    Obame, Conan
    Wagner, Fabien
    George-Chacon, Stephanie
    White, Lee
    Saatchi, Sassan
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (07):
  • [10] Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing
    Xie, Mingjuan
    Ma, Xiaofei
    Wang, Yuangang
    Li, Chaofan
    Shi, Haiyang
    Yuan, Xiuliang
    Hellwich, Olaf
    Chen, Chunbo
    Zhang, Wenqiang
    Zhang, Chen
    Ling, Qing
    Gao, Ruixiang
    Zhang, Yu
    Ochege, Friday Uchenna
    Frankl, Amaury
    De Maeyer, Philippe
    Buchmann, Nina
    Feigenwinter, Iris
    Olesen, Jorgen E.
    Juszczak, Radoslaw
    Jacotot, Adrien
    Korrensalo, Aino
    Pitacco, Andrea
    Varlagin, Andrej
    Shekhar, Ankit
    Lohila, Annalea
    Carrara, Arnaud
    Brut, Aurore
    Kruijt, Bart
    Loubet, Benjamin
    Heinesch, Bernard
    Chojnicki, Bogdan
    Helfter, Carole
    Vincke, Caroline
    Shao, Changliang
    Bernhofer, Christian
    Bruemmer, Christian
    Wille, Christian
    Tuittila, Eeva-Stiina
    Nemitz, Eiko
    Meggio, Franco
    Dong, Gang
    Lanigan, Gary
    Niedrist, Georg
    Wohlfahrt, Georg
    Zhou, Guoyi
    Goded, Ignacio
    Gruenwald, Thomas
    Olejnik, Janusz
    Jansen, Joachim
    [J]. SCIENTIFIC DATA, 2023, 10 (01)