Parameter determination for the Mini-Oscillator Model of the Viscoelastic Material

被引:2
|
作者
Huang Zhi-cheng [1 ]
Wu Nan-xing [1 ]
Wang Xing-guo [1 ]
Li Zelun [2 ]
机构
[1] Jingdezhen Ceram Inst, Jingdezhen 333001, Peoples R China
[2] Chongqing Univ Sci & Technol, Coll Mech & Dynam Engn, Chongqing, Peoples R China
关键词
FRACTIONAL CALCULUS; TIME-DOMAIN;
D O I
10.1088/1755-1315/267/3/032100
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The viscoelastic composite structure is widely used in the vibration and noise suppression of thin-walled components. The vibration analysis of viscoelastic composite structures must involve the constitutive equation of viscoelastic materials. The form of the constitutive equation of viscoelastic material has a decisive influence on the dynamic analysis process of viscoelastic composite structures. Since the constitutive relation of the viscoelastic material changes with time, frequency and temperature, the analysis of the dynamic characteristics of the viscoelastic composite structure is greatly complicated. The mini-oscillator model considers the frequency-dependent properties of viscoelastic materials. Therefore, it is widely used in the dynamic analysis of composite structures. Aims at the need of viscoelastic material passive vibration control for viscoelastic composite structures, a method for determining the parameters of mini-oscillator model is proposed. The method obtains the viscoelastic material mini-oscillator model parameters by parameter fitting by the measured viscoelastic material complex modulus data in the frequency domain or other viscoelastic material damping model expressions obtained from experimental data. The results are compared with fractional derivative model. The results show that the mini-oscillator model can correctly describe stress-strain relationship of viscoelastic material and the parameter fitting method proposed in this paper is accurate and effective.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Fractional Maxwell Model of Viscoelastic Oscillator and Its Frequency Response
    Li, Zhan-Long
    Liu, Zhi-qi
    Sun, Da-Gang
    Yan, Bi-Juan
    Meng, Jie
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2018, 6 (01) : 1 - 6
  • [42] A viscoelastic - viscoplastic material model for superalloy applications
    Rouse, J. P.
    Engel, B.
    Hyde, C. J.
    Pattison, S. J.
    Whittaker, M. T.
    Jones, J. P.
    Cockings, B.
    Barnard, N. C.
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 136
  • [43] A CONSTITUTIVE MODEL FOR ICE AS A DAMAGING VISCOELASTIC MATERIAL
    SJOLIND, SG
    COLD REGIONS SCIENCE AND TECHNOLOGY, 1987, 14 (03) : 247 - 262
  • [44] A viscoelastic model for flexible fibers with material damping
    Nan, Wenguang
    Wang, Yueshe
    Tang, Huiping
    POWDER TECHNOLOGY, 2015, 276 : 175 - 182
  • [45] A nonlinear fractional viscoelastic material model for polymers
    Mueller, Sebastian
    Kaestner, Markus
    Brummund, Joerg
    Ulbricht, Volker
    COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (10) : 2938 - 2949
  • [46] COMPARISON OF VIRTUAL FIELDS METHOD, PARALLEL NETWORK MATERIAL MODEL AND FINITE ELEMENT UPDATING FOR MATERIAL PARAMETER DETERMINATION
    Dirisamer, Florian
    Cakmak, Umut D.
    Kallai, Imre
    Machado, Martin
    Major, Zoltan
    INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL METHODS AND NUMERICAL SIMULATION IN ENGINEERING SCIENCES (EXNUM 2016), 2017, 7 : 7 - 11
  • [47] A Differential Model of Plastically Deformed Viscoelastic Material
    Svistkov, A. L.
    Journal of Applied Mechanics and Technical Physics (English translation of PMTF, Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki), 37 (05):
  • [48] CONSTITUTIVE MODEL OF A VISCOELASTIC MATERIAL AT FINITE STRAINS
    DROZDOV, A
    MECHANICS RESEARCH COMMUNICATIONS, 1992, 19 (06) : 535 - 540
  • [49] Material law parameter determination of magnesium alloys
    Ebeling, T.
    Hartig, Ch.
    Laser, T.
    Bormann, R.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 527 (1-2): : 272 - 280
  • [50] Parameter estimation on polymer solutions with fractional viscoelastic model
    Wang, Xiaoping
    Qi, Haitao
    Xu, Huanying
    Wang, Xin
    Qiao, Yanli
    IFAC PAPERSONLINE, 2024, 58 (12): : 359 - 363