Parameter determination for the Mini-Oscillator Model of the Viscoelastic Material

被引:2
|
作者
Huang Zhi-cheng [1 ]
Wu Nan-xing [1 ]
Wang Xing-guo [1 ]
Li Zelun [2 ]
机构
[1] Jingdezhen Ceram Inst, Jingdezhen 333001, Peoples R China
[2] Chongqing Univ Sci & Technol, Coll Mech & Dynam Engn, Chongqing, Peoples R China
关键词
FRACTIONAL CALCULUS; TIME-DOMAIN;
D O I
10.1088/1755-1315/267/3/032100
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The viscoelastic composite structure is widely used in the vibration and noise suppression of thin-walled components. The vibration analysis of viscoelastic composite structures must involve the constitutive equation of viscoelastic materials. The form of the constitutive equation of viscoelastic material has a decisive influence on the dynamic analysis process of viscoelastic composite structures. Since the constitutive relation of the viscoelastic material changes with time, frequency and temperature, the analysis of the dynamic characteristics of the viscoelastic composite structure is greatly complicated. The mini-oscillator model considers the frequency-dependent properties of viscoelastic materials. Therefore, it is widely used in the dynamic analysis of composite structures. Aims at the need of viscoelastic material passive vibration control for viscoelastic composite structures, a method for determining the parameters of mini-oscillator model is proposed. The method obtains the viscoelastic material mini-oscillator model parameters by parameter fitting by the measured viscoelastic material complex modulus data in the frequency domain or other viscoelastic material damping model expressions obtained from experimental data. The results are compared with fractional derivative model. The results show that the mini-oscillator model can correctly describe stress-strain relationship of viscoelastic material and the parameter fitting method proposed in this paper is accurate and effective.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Study on ADF model of viscoelastic material
    Guo, Ya-Juan
    Li, Hong-Guang
    Meng, Guang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2007, 26 (10): : 145 - 147
  • [32] Fractional differential model of viscoelastic material
    Shimizu, Nobuyuki
    Iijima, Masaki
    Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1996, 62 (604): : 4447 - 4451
  • [33] PARAMETER-ESTIMATION FOR A VISCOELASTIC CONSTITUTIVE MODEL
    ROGERS, JD
    SKAAR, SB
    PROCEEDINGS OF THE 1989 SEM SPRING CONFERENCE ON EXPERIMENTAL MECHANICS, 1989, : 274 - 280
  • [34] Parameter Identification of Nonlinear Viscoelastic Material Model Using Finite Element-Based Inverse Analysis
    Hamim, Salah U.
    Singh, Raman P.
    RESIDUAL STRESS, THERMOMECHANICS & INFRARED IMAGING, HYBRID TECHNIQUES AND INVERSE PROBLEMS, VOL 9, 2017, : 141 - 150
  • [35] PARAMETRIC MODEL-ORDER REDUCTION FOR VISCOELASTIC FINITE ELEMENT MODELS: AN APPLICATION TO MATERIAL PARAMETER IDENTIFICATION
    van de Walle, Axel
    Deckers, Elke
    Desmet, Wim
    Rouleau, Lucie
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: MAJOR CHALLENGES IN ACOUSTICS, NOISE AND VIBRATION RESEARCH, 2015, 2015,
  • [36] Ultrasonic determination of stiffness properties of an orthotropic viscoelastic material
    Newell, KJ
    Sinclair, AN
    Fan, Y
    Georgescu, C
    RESEARCH IN NONDESTRUCTIVE EVALUATION, 1997, 9 (01) : 25 - 39
  • [37] THE DETERMINATION OF VISCOELASTIC CHARACTERISTICS OF POLYMERIC MATERIAL BY THE DYNAMIC METHOD
    RYZHKOVA, KA
    DORFMAN, IY
    BELGOVSKII, IM
    MANEVICH, LI
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A, 1981, 23 (11): : 2615 - 2618
  • [38] Experimental determination of the dynamic properties of a soft viscoelastic material
    Remillat, C
    Thouverez, F
    Laine, JP
    Jézéquel, L
    MECHANICS OF SANDWICH STRUCTURES, 1998, : 345 - 352
  • [39] DETERMINATION OF MECHANICAL AND OPTICOMECHANICAL CHARACTERISTICS OF A BIREFRIGENT VISCOELASTIC MATERIAL
    DEROUET, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1984, 35 (03): : 413 - 423
  • [40] Fractional Maxwell Model of Viscoelastic Oscillator and Its Frequency Response
    Zhan-Long Li
    Zhi-qi Liu
    Da-Gang Sun
    Bi-Juan Yan
    Jie Meng
    Journal of Vibration Engineering & Technologies, 2018, 6 : 1 - 6