Parameter determination for the Mini-Oscillator Model of the Viscoelastic Material

被引:2
|
作者
Huang Zhi-cheng [1 ]
Wu Nan-xing [1 ]
Wang Xing-guo [1 ]
Li Zelun [2 ]
机构
[1] Jingdezhen Ceram Inst, Jingdezhen 333001, Peoples R China
[2] Chongqing Univ Sci & Technol, Coll Mech & Dynam Engn, Chongqing, Peoples R China
关键词
FRACTIONAL CALCULUS; TIME-DOMAIN;
D O I
10.1088/1755-1315/267/3/032100
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The viscoelastic composite structure is widely used in the vibration and noise suppression of thin-walled components. The vibration analysis of viscoelastic composite structures must involve the constitutive equation of viscoelastic materials. The form of the constitutive equation of viscoelastic material has a decisive influence on the dynamic analysis process of viscoelastic composite structures. Since the constitutive relation of the viscoelastic material changes with time, frequency and temperature, the analysis of the dynamic characteristics of the viscoelastic composite structure is greatly complicated. The mini-oscillator model considers the frequency-dependent properties of viscoelastic materials. Therefore, it is widely used in the dynamic analysis of composite structures. Aims at the need of viscoelastic material passive vibration control for viscoelastic composite structures, a method for determining the parameters of mini-oscillator model is proposed. The method obtains the viscoelastic material mini-oscillator model parameters by parameter fitting by the measured viscoelastic material complex modulus data in the frequency domain or other viscoelastic material damping model expressions obtained from experimental data. The results are compared with fractional derivative model. The results show that the mini-oscillator model can correctly describe stress-strain relationship of viscoelastic material and the parameter fitting method proposed in this paper is accurate and effective.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The mini-oscillator model research for viscoelastic material
    Shi, Y.
    Hua, H.
    Fu, Z.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2001, 14 (01): : 100 - 104
  • [2] Parameter determination and response analysis of viscoelastic material
    Yajuan Guo
    Guang Meng
    Hongguang Li
    Archive of Applied Mechanics, 2009, 79 : 147 - 155
  • [3] Parameter determination and response analysis of viscoelastic material
    Guo, Yajuan
    Meng, Guang
    Li, Hongguang
    ARCHIVE OF APPLIED MECHANICS, 2009, 79 (02) : 147 - 155
  • [4] Methodology for Parameter Identification in Nonlinear Viscoelastic Material Model
    Lars-Olof Nordin
    Janis Varna
    Mechanics of Time-Dependent Materials, 2005, 9 : 57 - 78
  • [5] Methodology for parameter identification in nonlinear viscoelastic material model
    Nordin, Lars-Olof
    Varna, Janis
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2005, 9 (04) : 259 - 280
  • [6] Parameter fitting for a non-linear viscoelastic material model
    Gotlih, K
    MAGIC WORLD OF TEXTILES, BOOK OF PROCEEDINGS, 2002, : 476 - 481
  • [7] Generalized Fractional Maxwell Model: Parameter Estimation of a Viscoelastic Material
    Costa, M. Fernanda P.
    Ribeiro, C.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 790 - 793
  • [8] Determination of material constants for nonlinear viscoelastic predictive model
    Lin, WS
    Pramanick, AK
    Sain, M
    JOURNAL OF COMPOSITE MATERIALS, 2004, 38 (01) : 19 - 29
  • [9] Approximate model for a viscoelastic oscillator
    Ketema, Y., 1600, American Society of Mechanical Engineers (70):
  • [10] Approximate model for a viscoelastic oscillator
    Ketema, Y
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2003, 70 (05): : 757 - 761