Towards Non-Degenerate Quantum Lithography

被引:0
|
作者
Zhou, Yu [1 ]
Peng, Tao [2 ]
Chen, Hui [3 ,4 ]
Liu, Jianbin [3 ,4 ]
Shih, Yanhua [5 ]
机构
[1] Xi An Jiao Tong Univ, Dept Appl Phys, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Xian 710049, Shaanxi, Peoples R China
[2] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
[3] Xi An Jiao Tong Univ, Elect Mat Res Lab, Minist Educ, Key Lab,Sch Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China
[4] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Sch Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China
[5] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 08期
基金
中国国家自然科学基金;
关键词
quantum lithography; entangled photon pairs; quantum imaging; MACH-ZEHNDER INTERFEROMETER; 2-PHOTON INTERFERENCE; BROGLIE WAVELENGTH; DIFFRACTION;
D O I
10.3390/app8081292
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The photonic de Broglie wavelength of a non-degenerate entangled photon pair is measured by using a Young's double slit interferometer, which proves that the non-degenerate entangled photon pairs have the potential to be used in quantum lithography. Experimental results show that the de Broglie wavelength of non-degenerate biphotons is well defined and its wavelength is neither the wavelength of the signal photon, nor the wavelength of the idler photon. According to the de Broglie equation, its wavelength corresponds to the momentum of the biphoton, which equals the sum of the momenta of signal and idler photons. The non-degenerate ghost interference/diffraction is also observed in these experiments.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Transformations and non-degenerate maps
    LI Baokui WANG Yuefei Institute of Mathematics Academy of Mathematics and System Sciences Chinese Academy of Sciences Beijing China
    Graduate School Chinese Academy of Sciences Beijing China
    ScienceinChina,SerA., 2005, Ser.A.2005(S1) (S1) : 195 - 205
  • [22] Transformations and non-degenerate maps
    Li, BK
    Wang, YF
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (Suppl 1): : 195 - 205
  • [23] Transformations and non-degenerate maps
    Baokui Li
    Yuefei Wang
    Science in China Series A: Mathematics, 2005, 48 : 195 - 205
  • [24] Non-degenerate maps and sets
    Jörg Winkelmann
    Mathematische Zeitschrift, 2005, 249 : 783 - 795
  • [25] Quantum noise reduction in the non-degenerate three-level micromaser
    Carvalho, CR
    Neto, PAM
    QUANTUM AND SEMICLASSICAL OPTICS, 1996, 8 (04): : 761 - 774
  • [26] Probing quantum correlations in non-degenerate hyper-Raman process
    Das, Moumita
    Sen, Biswajit
    Sensharma, Ankur
    Thapliyal, Kishore
    Pathak, Anirban
    EUROPEAN PHYSICAL JOURNAL PLUS, 2025, 140 (03):
  • [27] Non-local correlation and quantum discord in two atoms in the non-degenerate model
    Mohamed, A. -B. A.
    ANNALS OF PHYSICS, 2012, 327 (12) : 3130 - 3137
  • [28] Companions to subdwarf B stars - Degenerate or non-degenerate?
    Maxted, PFL
    Marsh, TR
    Morales-Rueda, L
    WHITE DWARFS, 2003, 105 : 97 - 98
  • [29] On the nilpotent functions at a non-degenerate arc
    Bourqui, David
    Haiech, Mercedes
    MANUSCRIPTA MATHEMATICA, 2021, 165 (1-2) : 227 - 238
  • [30] Non-degenerate nanomechanical parametric amplifier
    Oikhovets, A
    Carr, DW
    Parpia, JM
    Craighead, G
    14TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2001, : 298 - 300