ASkew-Gaussian Spatio-Temporal Process with Non-Stationary Correlation Structure

被引:1
|
作者
Barzegar, Zahra [1 ]
Rivaz, Firoozeh [1 ]
Khaledi, Majid Jafari [2 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Stat, Tehran, Iran
[2] Tarbiat Modares Univ, Fac Math Sci, Dept Stat, Tehran, Iran
来源
关键词
Closed-Skew Normal Distribution; Low-Rank Models; Non-Stationarity; Spatio-Temporal Data; BAYESIAN PREDICTION; CONVOLUTION;
D O I
10.29252/jirss.18.2.63
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a new class of spatio-temporal process models that can simultaneously capture skewness and non-stationarity. The proposed approach which is based on using the closed skew-normal distribution in the low-rank representation of stochastic processes, has several favorable properties. In particular, it greatly reduces the dimension of the spatio-temporal latent variables and induces flexible correlation structures. Bayesian analysis of the model is implemented through a Gibbs MCMC algorithm which incorporates a version of the Kalman filtering algorithm. All fully conditional posterior distributions have closed forms which show another advantageous property of the proposed model. We demonstrate the efficiency of our model through an extensive simulation study and an application to a real data set comprised of precipitation measurements.
引用
收藏
页码:63 / 85
页数:23
相关论文
共 50 条
  • [41] Stochastic variational inference for scalable non-stationary Gaussian process regression
    Ionut Paun
    Dirk Husmeier
    Colin J. Torney
    Statistics and Computing, 2023, 33
  • [42] Leveraged Non-Stationary Gaussian Process Regression for Autonomous Robot Navigation
    Choi, Sungjoon
    Kim, Eunwoo
    Lee, Kyungjae
    Oh, Songhwai
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 473 - 478
  • [43] Stochastic variational inference for scalable non-stationary Gaussian process regression
    Paun, Ionut
    Husmeier, Dirk
    Torney, Colin J.
    STATISTICS AND COMPUTING, 2023, 33 (02)
  • [44] Spatio-Temporal Analysis of Gaussian WSS Processes via Complex Correlation and Partial Correlation Screening
    Firouzi, Hamed
    Wei, Dennis
    Hero, Alfred O., III
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 455 - 458
  • [45] Families of spatio-temporal stationary covariance models
    Ma, C
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 116 (02) : 489 - 501
  • [46] Flexible spatio-temporal stationary variogram models
    Rubén Fernández-Casal
    Wenceslao González-Manteiga
    Manuel Febrero-Bande
    Statistics and Computing, 2003, 13 : 127 - 136
  • [47] Flexible spatio-temporal stationary variogram models
    Fernández-Casal, R
    González-Manteiga, W
    Febrero-Bande, M
    STATISTICS AND COMPUTING, 2003, 13 (02) : 127 - 136
  • [48] Predicting spatio-temporal distributions of migratory populations using Gaussian process modelling
    Piironen, Antti
    Piironen, Juho
    Laaksonen, Toni
    JOURNAL OF APPLIED ECOLOGY, 2022, 59 (04) : 1146 - 1156
  • [49] Dynamic Gaussian process regression for spatio-temporal data based on local clustering
    Binglin WANG
    Liang YAN
    Qi RONG
    Jiangtao CHEN
    Pengfei SHEN
    Xiaojun DUAN
    Chinese Journal of Aeronautics, 2024, 37 (12) : 245 - 257
  • [50] Gaussian process modelling for bicoid mRNA regulation in spatio-temporal Bicoid profile
    Liu, Wei
    Niranjan, Mahesan
    BIOINFORMATICS, 2012, 28 (03) : 366 - 372