ASkew-Gaussian Spatio-Temporal Process with Non-Stationary Correlation Structure

被引:1
|
作者
Barzegar, Zahra [1 ]
Rivaz, Firoozeh [1 ]
Khaledi, Majid Jafari [2 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Stat, Tehran, Iran
[2] Tarbiat Modares Univ, Fac Math Sci, Dept Stat, Tehran, Iran
来源
关键词
Closed-Skew Normal Distribution; Low-Rank Models; Non-Stationarity; Spatio-Temporal Data; BAYESIAN PREDICTION; CONVOLUTION;
D O I
10.29252/jirss.18.2.63
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a new class of spatio-temporal process models that can simultaneously capture skewness and non-stationarity. The proposed approach which is based on using the closed skew-normal distribution in the low-rank representation of stochastic processes, has several favorable properties. In particular, it greatly reduces the dimension of the spatio-temporal latent variables and induces flexible correlation structures. Bayesian analysis of the model is implemented through a Gibbs MCMC algorithm which incorporates a version of the Kalman filtering algorithm. All fully conditional posterior distributions have closed forms which show another advantageous property of the proposed model. We demonstrate the efficiency of our model through an extensive simulation study and an application to a real data set comprised of precipitation measurements.
引用
收藏
页码:63 / 85
页数:23
相关论文
共 50 条
  • [31] Learning a spatio-temporal correlation
    Narain, D.
    Mamassian, P.
    van Beers, R. J.
    Smeets, J. B. J.
    Brenner, E.
    PERCEPTION, 2012, 41 : 58 - 58
  • [32] Temporal correlation functions of dynamic systems in non-stationary states
    Chen, T. T.
    Zheng, B.
    Li, Y.
    Jiang, X. F.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [33] Spatio-temporal violent event prediction using Gaussian process regression
    Kupilik M.
    Witmer F.
    Journal of Computational Social Science, 2018, 1 (2): : 437 - 451
  • [34] Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors
    Kuzin, Danil
    Isupova, Olga
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (17) : 4598 - 4611
  • [35] Spatio-temporal storm surge emulation using Gaussian Process techniques
    Kyprioti, Aikaterini P.
    Irwin, Christopher
    Taflanidis, Alexandros A.
    Nadal-Caraballo, Norberto C.
    Yawn, Madison C.
    Aucoin, Luke A.
    COASTAL ENGINEERING, 2023, 180
  • [36] Online Spatio-Temporal Gaussian Process Experts with Application to Tactile Classification
    Soh, Harold
    Su, Yanyu
    Demiris, Yiannis
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 4489 - 4496
  • [37] STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data
    Hyun, Jung Won
    Li, Yimei
    Huang, Chao
    Styner, Martin
    Lin, Weili
    Zhu, Hongtu
    NEUROIMAGE, 2016, 134 : 550 - 562
  • [38] An additive approximate Gaussian process model for large spatio-temporal data
    Ma, Pulong
    Konomi, Bledar A.
    Kang, Emily L.
    ENVIRONMETRICS, 2019, 30 (08)
  • [39] REAL-TIME SEGMENTATION OF OBJECTS FROM VIDEO SEQUENCES WITH NON-STATIONARY BACKGROUNDS USING SPATIO-TEMPORAL COHERENCE
    Ahn, Jae-Kyun
    Kim, Chang-Su
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1544 - 1547
  • [40] Non-stationary Gaussian signal classification
    Roberts, G
    Zoubir, AM
    Boashash, B
    1996 IEEE TENCON - DIGITAL SIGNAL PROCESSING APPLICATIONS PROCEEDINGS, VOLS 1 AND 2, 1996, : 526 - 529