Hilbert Space Geometry of Random Matrix Eigenstates

被引:7
|
作者
Penner, Alexander-Georg [1 ,2 ]
von Oppen, Felix [1 ,2 ]
Zarand, Gergely [3 ,4 ]
Zirnbauer, Martin R. [5 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
[3] Budapest Univ Technol & Econ, Dept Theoret Phys, Erot Quantum Phases Momentum Res Grp, Budafoki Ut 8, H-1111 Budapest, Hungary
[4] Budapest Univ Technol & Econ, Inst Phys, MTA BME Quantum Correlat Grp, Budafoki Ut 8, H-1111 Budapest, Hungary
[5] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77a, D-50937 Cologne, Germany
关键词
CURVATURE DISTRIBUTION; EIGENVALUE CURVATURES; ENERGY-LEVELS; QUANTUM; SYMMETRY; SUPERBOSONIZATION; UNIVERSALITY; STATISTICS; PHYSICS;
D O I
10.1103/PhysRevLett.126.200604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The geometry of multiparameter families of quantum states is important in numerous contexts, including adiabatic or nonadiabatic quantum dynamics, quantum quenches, and the characterization of quantum critical points. Here, we discuss the Hilbert space geometry of eigenstates of parameter-dependent random matrix ensembles, deriving the full probability distribution of the quantum geometric tensor for the Gaussian unitary ensemble. Our analytical results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature. We discuss relations to Levy stable distributions and compare our results to numerical simulations of random matrix ensembles as well as electrons in a random magnetic field.
引用
收藏
页数:5
相关论文
共 50 条