Hilbert Space Geometry of Random Matrix Eigenstates

被引:7
|
作者
Penner, Alexander-Georg [1 ,2 ]
von Oppen, Felix [1 ,2 ]
Zarand, Gergely [3 ,4 ]
Zirnbauer, Martin R. [5 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
[3] Budapest Univ Technol & Econ, Dept Theoret Phys, Erot Quantum Phases Momentum Res Grp, Budafoki Ut 8, H-1111 Budapest, Hungary
[4] Budapest Univ Technol & Econ, Inst Phys, MTA BME Quantum Correlat Grp, Budafoki Ut 8, H-1111 Budapest, Hungary
[5] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77a, D-50937 Cologne, Germany
关键词
CURVATURE DISTRIBUTION; EIGENVALUE CURVATURES; ENERGY-LEVELS; QUANTUM; SYMMETRY; SUPERBOSONIZATION; UNIVERSALITY; STATISTICS; PHYSICS;
D O I
10.1103/PhysRevLett.126.200604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The geometry of multiparameter families of quantum states is important in numerous contexts, including adiabatic or nonadiabatic quantum dynamics, quantum quenches, and the characterization of quantum critical points. Here, we discuss the Hilbert space geometry of eigenstates of parameter-dependent random matrix ensembles, deriving the full probability distribution of the quantum geometric tensor for the Gaussian unitary ensemble. Our analytical results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature. We discuss relations to Levy stable distributions and compare our results to numerical simulations of random matrix ensembles as well as electrons in a random magnetic field.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] SIGN-INVARIANT RANDOM ELEMENTS IN HILBERT SPACE
    BERMAN, SM
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 8 (01): : 73 - &
  • [32] From noncommutative geometry to random matrix theory
    Hessam, Hamed
    Khalkhali, Masoud
    Pagliaroli, Nathan
    Verhoeven, Luuk S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (41)
  • [33] Geometry of quantum dynamics in infinite-dimensional Hilbert space
    Grabowski, Janusz
    Kus, Marek
    Marmo, Giuseppe
    Shulman, Tatiana
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (16)
  • [34] Hilbert Space of Probability Density Functions Based on Aitchison Geometry
    J. J. Egozcue
    J. L. Díaz–Barrero
    V. Pawlowsky–Glahn
    Acta Mathematica Sinica, 2006, 22 : 1175 - 1182
  • [35] Symplectic geometry on the Hilbert phase space and foundations of quantum mechanics
    Khrennikov, Andrei
    Mathematical Modeling of Wave Phenomena, 2006, 834 : 324 - 343
  • [36] Hilbert Space of Probability Density Functions Based on Aitchison Geometry
    J.J.EGOZCUE
    J.L.DIAZ-BARRERO
    V.PAWLOWSKY-GLAHN
    Acta Mathematica Sinica(English Series), 2006, 22 (04) : 1175 - 1182
  • [37] Hilbert space of probability density functions based on Aitchison geometry
    Egozcue, J. J.
    Diaz-Barrero, J. L.
    Pawlowsky-Glahn, V.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1175 - 1182
  • [38] Geometry and 2-Hilbert space for nonassociative magnetic translations
    Severin Bunk
    Lukas Müller
    Richard J. Szabo
    Letters in Mathematical Physics, 2019, 109 : 1827 - 1866
  • [39] Geometry and 2-Hilbert space for nonassociative magnetic translations
    Bunk, Severin
    Mueller, Lukas
    Szabo, Richard J.
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (08) : 1827 - 1866
  • [40] Geometry Interpretation of Differentiability of Rock Types in Hilbert's Space
    Feriancikova, Katarina
    Lazarova, Edita
    Krul'akova, Maria
    Ivanicova, Lucia
    Lesso, Igor
    INZYNIERIA MINERALNA-JOURNAL OF THE POLISH MINERAL ENGINEERING SOCIETY, 2019, (02): : 49 - 54