Hilbert Space Geometry of Random Matrix Eigenstates

被引:7
|
作者
Penner, Alexander-Georg [1 ,2 ]
von Oppen, Felix [1 ,2 ]
Zarand, Gergely [3 ,4 ]
Zirnbauer, Martin R. [5 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
[3] Budapest Univ Technol & Econ, Dept Theoret Phys, Erot Quantum Phases Momentum Res Grp, Budafoki Ut 8, H-1111 Budapest, Hungary
[4] Budapest Univ Technol & Econ, Inst Phys, MTA BME Quantum Correlat Grp, Budafoki Ut 8, H-1111 Budapest, Hungary
[5] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77a, D-50937 Cologne, Germany
关键词
CURVATURE DISTRIBUTION; EIGENVALUE CURVATURES; ENERGY-LEVELS; QUANTUM; SYMMETRY; SUPERBOSONIZATION; UNIVERSALITY; STATISTICS; PHYSICS;
D O I
10.1103/PhysRevLett.126.200604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The geometry of multiparameter families of quantum states is important in numerous contexts, including adiabatic or nonadiabatic quantum dynamics, quantum quenches, and the characterization of quantum critical points. Here, we discuss the Hilbert space geometry of eigenstates of parameter-dependent random matrix ensembles, deriving the full probability distribution of the quantum geometric tensor for the Gaussian unitary ensemble. Our analytical results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature. We discuss relations to Levy stable distributions and compare our results to numerical simulations of random matrix ensembles as well as electrons in a random magnetic field.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Statistical properties of eigenstates beyond random matrix theory
    Heller, EJ
    MOLECULAR PHYSICS, 2006, 104 (08) : 1207 - 1216
  • [2] LAGRANGE MULTIPLIERS AND THE GEOMETRY OF HILBERT SPACE
    BUTLER, T
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (04): : 781 - 793
  • [3] GEOMETRY OF PROJECTIVE HILBERT-SPACE
    GRIGORENKO, AN
    PHYSICAL REVIEW A, 1992, 46 (11): : 7292 - 7294
  • [4] Geometry of the Hilbert space and the quantum Zeno effect
    Pati, AK
    Lawande, SV
    PHYSICAL REVIEW A, 1998, 58 (02): : 831 - 835
  • [5] Hilbert Space Geometry of Quadratic Covariance Bounds
    Howard, Stephen D.
    Moran, William
    Pakrooh, Pooria
    Scharf, Louis L.
    2017 FIFTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2017, : 1578 - 1581
  • [6] The Hilbert space geometry of the stochastic Rihaczek distribution
    Scharf, LL
    Friedlander, B
    Flandrin, P
    Hanssen, A
    CONFERENCE RECORD OF THE THIRTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1 AND 2, 2001, : 720 - 725
  • [7] Hilbert space fragmentation from lattice geometry
    Harkema, Pieter H.
    Iversen, Michael
    Nielsen, Anne E. B.
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [8] METRIC GEOMETRY OF IDEALS OF OPERATORS ON HILBERT SPACE
    HOLUB, JR
    MATHEMATISCHE ANNALEN, 1973, 201 (02) : 157 - 163
  • [9] STABLE RANDOM VECTORS IN HILBERT-SPACE
    LISITSKY, AD
    LECTURE NOTES IN MATHEMATICS, 1989, 1412 : 172 - 182
  • [10] ON ORTHOGONAL RANDOM VECTORS IN HILBERT-SPACE
    VAKHANIA, NN
    KANDELAKI, NP
    DOKLADY AKADEMII NAUK SSSR, 1987, 294 (03): : 528 - 531