FACTORIALS AND THE RAMANUJAN FUNCTION

被引:2
|
作者
Bravo, Jhon J. [1 ]
Luca, Florian [2 ]
机构
[1] Univ Cauca, Dept Matemat, Calle 5 4-70, Popayan, Colombia
[2] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, Johannesburg, South Africa
关键词
LEHMER-NUMBERS; DIVISORS; LUCAS;
D O I
10.1017/S0017089515000130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2006, F. Luca and I. E. Shparlinski (Proc. Indian Acad. Sci. (Math. Sci.) 116(1) (2006), 1-8) proved that there are only finitelymany pairs (n, m) of positive integers which satisfy the Diophantine equation vertical bar tau (n!)vertical bar = m!, where tau is the Ramanujan function. In this paper, we follow the same approach of Luca and Shparlinski (Proc. Indian Acad. Sci. (Math. Sci.) 116(1) (2006), 1-8) to determine all solutions of the above equation. The proof of our main theorem uses linear forms in two logarithms and arithmetic properties of the Ramanujan function.
引用
收藏
页码:177 / 185
页数:9
相关论文
共 50 条
  • [21] On the zeros of approximations of the Ramanujan Ξ-function
    Haseo Ki
    The Ramanujan Journal, 2008, 17 : 123 - 143
  • [22] Remark on factorials that are products of factorials
    Bhat, K. G.
    Ramachandra, K.
    MATHEMATICAL NOTES, 2010, 88 (3-4) : 317 - 320
  • [23] Squares and factorials in products of factorials
    F. Luca
    N. Saradha
    T. N. Shorey
    Monatshefte für Mathematik, 2014, 175 : 385 - 400
  • [24] On the value set of the Ramanujan function
    Shparlinski, IE
    ARCHIV DER MATHEMATIK, 2005, 85 (06) : 508 - 513
  • [25] On basic properties of the Ramanujan τ-function
    P. V. Snurnitsyn
    Mathematical Notes, 2011, 90 : 723 - 729
  • [26] Small values of the Ramanujan τ-function
    Luca, Florian
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2024, 67 (04): : 467 - 470
  • [27] Remark on factorials that are products of factorials
    K. G. Bhat
    K. Ramachandra
    Mathematical Notes, 2010, 88 : 317 - 320
  • [28] On Ramanujan's tau function
    Ewell, JA
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (02) : 453 - 461
  • [29] Arithmetic properties of the Ramanujan function
    Florian Luca
    Igor E. Shparlinski
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 1 - 8
  • [30] The Golden Ratio, Factorials, and the Lambert W Function
    Petojevic, Aleksandar
    Ranitovic, Marjana Gorjanac
    Rastovac, Dragan
    Mandic, Milinko
    JOURNAL OF INTEGER SEQUENCES, 2024, 27 (05) : 1 - 11