The joint embedding property and maximal models

被引:8
|
作者
Baldwin, John T. [1 ]
Koerwien, Martin
Souldatos, Ioannis [2 ]
机构
[1] Dept Math Stat & Comp Sci, M-C 249 851 S Morgan, Chicago, IL 60607 USA
[2] Univ Detroit Mercy, Dept Math, 4001 W McNichols, Detroit, MI 48221 USA
基金
奥地利科学基金会;
关键词
Abstract elementary class; Joint embedding; Amalgamation; Maximal models; Hanf number for joint embedding; Characterizable cardinals; CATEGORICITY;
D O I
10.1007/s00153-016-0480-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of a 'pure' Abstract Elementary Class to block trivial counterexamples. We study classes of models of bipartite graphs and show: Main Theorem (cf. Theorem 3.34 and Corollary 3.38): If <lambda(i) : i <= alpha < N-1 > is a strictly increasing sequence of characterizable cardinals (Definition 2.1) whosemodels satisfy JEP(< lambda(0)), there is an L-omega 1,L-omega-sentence psi whose models form a pure AEC and (1) The models of psi satisfy JEP (< lambda(0)), while JEP fails for all larger cardinals and AP fails in all infinite cardinals. (2) There exist 2(lambda i+) non-isomorphic maximal models of psi in lambda(+)(i), for all i <= alpha, but no maximal models in any other cardinality; and (3) psi has arbitrarily large models. In particular this shows the Hanf number for JEP and the Hanf number for maximality for pure AEC with Lowenheim number N-0 are at least beth(omega 1). We show that although AP(kappa) for each kappa implies the full amalgamation property, J EP(kappa) for each kappa does not imply the full joint embedding property. We prove the main combinatorial device of this paper cannot be used to extend the main theorem to a complete sentence.
引用
收藏
页码:545 / 565
页数:21
相关论文
共 50 条
  • [31] On the embedding of (k,p)-arcs is maximal arcs
    Szhonyi, T
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 18 (1-3) : 235 - 246
  • [32] Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models
    Kim, Donggeun
    Kim, Taesup
    COMPUTER VISION - ECCV 2024, PT LXXXVI, 2025, 15144 : 171 - 187
  • [33] PPNE: Property Preserving Network Embedding
    Li, Chaozhuo
    Wang, Senzhang
    Yang, Dejian
    Li, Zhoujun
    Yang, Yang
    Zhang, Xiaoming
    Zhou, Jianshe
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2017), PT I, 2017, 10177 : 163 - 179
  • [34] Property Invariant Embedding for Automated Reasoning
    Olsak, Miroslav
    Kaliszyk, Cezary
    Urban, Josef
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1395 - 1402
  • [35] On the summing property of the Sobolev embedding operators
    Wojciechowski, M
    POSITIVITY, 1997, 1 (02) : 165 - 170
  • [36] ON AN EMBEDDING PROPERTY OF GENERALIZED CARTER SUBGROUPS
    CLINE, E
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 29 (03) : 491 - &
  • [37] THE EMBEDDING PROPERTY FOR SORTED PROFINITE GROUPS
    Lee, Junguk
    JOURNAL OF SYMBOLIC LOGIC, 2023, 88 (03) : 1005 - 1037
  • [38] Embedding property on rearrangement invariant spaces
    LI Hongliang Department of Mathematics Zhejiang University Hangzhou ChinaDepartment of Mathematics Zhejiang International Studies University Hangzhou China
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2012, 27 (03) : 371 - 378
  • [39] Embedding property on rearrangement invariant spaces
    Hong-liang Li
    Applied Mathematics-A Journal of Chinese Universities, 2012, 27 : 371 - 378
  • [40] On the Summing Property of the Sobolev Embedding Operators
    M. Wojciechowski
    Positivity, 1997, 1 : 165 - 169